E. Wizards and Bets

题目连接:

http://www.codeforces.com/contest/167/problem/E

Description

In some country live wizards. They like to make weird bets.

Two wizards draw an acyclic directed graph with n vertices and m edges (the graph's vertices are numbered from 1 to n). A source is a vertex with no incoming edges, and a sink is the vertex with no outgoing edges. Note that a vertex could be the sink and the source simultaneously. In the wizards' graph the number of the sinks and the sources is the same.

Wizards numbered the sources in the order of increasing numbers of the vertices from 1 to k. The sinks are numbered from 1 to k in the similar way.

To make a bet, they, as are real wizards, cast a spell, which selects a set of k paths from all sources to the sinks in such a way that no two paths intersect at the vertices. In this case, each sink has exactly one path going to it from exactly one source. Let's suppose that the i-th sink has a path going to it from the ai's source. Then let's call pair (i, j) an inversion if i < j and ai > aj. If the number of inversions among all possible pairs (i, j), such that (1 ≤ i < j ≤ k), is even, then the first wizard wins (the second one gives him one magic coin). Otherwise, the second wizard wins (he gets one magic coin from the first one).

Our wizards are captured with feverish excitement, so they kept choosing new paths again and again for so long that eventually they have chosen every possible set of paths for exactly once. The two sets of non-intersecting pathes are considered to be different, if and only if there is an edge, which lies at some path in one set and doesn't lie at any path of another set. To check their notes, they asked you to count the total winnings of the first player for all possible sets of paths modulo a prime number p.

Input

The first line contains three space-separated integers n, m, p (1 ≤ n ≤ 600, 0 ≤ m ≤ 105, 2 ≤ p ≤ 109 + 7). It is guaranteed that p is prime number.

Next m lines contain edges of the graph. Each line contains a pair of space-separated integers, ai bi — an edge from vertex ai to vertex bi. It is guaranteed that the graph is acyclic and that the graph contains the same number of sources and sinks. Please note that the graph can have multiple edges.

Output

Print the answer to the problem — the total winnings of the first player modulo a prime number p. Please note that the winnings may be negative, but the modulo residue must be non-negative (see the sample).

Sample Input

4 2 1000003

1 3

2 4

Sample Output

1

Hint

题意

给你一个有向无环图,然后保证这个图里面有k个点的入度为0,k个点的出度为0

然后现在你需要在这个图里面找k条不相交的路径,使得入度为0的点和出度为0的点一一对应

如果连接的逆序对数为偶数,那么得到一块钱,如果为奇数,就失去一块钱

现在问你所有的情况都找到之和,问你最后你有多少钱

钱需要mod一个数

题解:

假设我们不考虑相交这个条件

那么我们用m[i][j]表示从第i个入度为0的点到第j个出度为0的点的路径数量的话

显然最后的答案就是m这个矩阵的行列式值

这个东西高斯消元就好了

然后我们考虑相交这个东西,其实相交这个东西没什么卵用

假设有1-2,2-3,2-5,4-2这四条边的话

显然答案是0,但是我们考虑相交也没关系,因为正反就抵消了

1-2-3,4-2-5;1-2-5,4-2-3 这样子就抵消了

所以相交这个条件没什么用。

然后搞一搞就完了,这道题

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 650+5;
long long quickpow(long long m,long long n,long long k)//返回m^n%k
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
int n,e,mod;
vector<int> E[maxn];
int in[maxn],out[maxn];
int f[maxn][maxn];
int m[maxn][maxn];
int q[maxn];
int S[maxn],T[maxn];
int k1=1,k2=1;
long long ans = 1; void guess()
{
for(int i=1;i<k1;i++)
{
if(m[i][i]==0)
{
for(int j=i+1;j<k1;j++)
{
if(m[j][i])
{
for(int k=i;k<k1;k++)
m[i][k]=(m[i][k]+m[j][k])%mod;
break;
}
}
if(m[i][i]==0)
{
puts("0");
return;
}
}
long long inv = quickpow(m[i][i],mod-2,mod);
for(int j=i+1;j<k1;j++)
{
long long temp = m[j][i]*inv%mod;
if(temp==0)continue;
for(int k=i;k<k1;k++)
m[j][k]=(m[j][k]-m[i][k]*temp)%mod;
}
} for(int i=1;i<k1;i++)
ans = ans*m[i][i]%mod;
if(ans<0)ans+=mod;
cout<<ans<<endl;
}
int main()
{
scanf("%d%d%d",&n,&e,&mod);
for(int i=1;i<=e;i++)
{
int x,y;
scanf("%d%d",&x,&y);
in[y]++,out[x]++;
E[x].push_back(y);
} for(int i=1;i<=n;i++)
if(in[i]==0)
S[k1++]=i;
for(int i=1;i<=n;i++)
if(out[i]==0)
T[k2++]=i; int l=1,r=1;
for(int i=1;i<=n;i++)
if(in[i]==0)
q[r++]=i;
while(l<r)
{
int now = q[l++];
for(int i=0;i<E[now].size();i++)
{
in[E[now][i]]--;
if(in[E[now][i]]==0)
q[r++]=E[now][i];
}
} for(int i=1;i<k1;i++)
f[S[i]][S[i]]=1; for(int i=1;i<=n;i++)
{
int u = q[i];
for(int j=1;j<k1;j++)
{
int s = S[j];
for(int k=0;k<E[u].size();k++)
f[s][E[u][k]]=(f[s][E[u][k]]+f[s][u])%mod;
}
} for(int i=1;i<k1;i++)
for(int j=1;j<k1;j++)
m[i][j]=f[S[i]][T[j]];
guess(); }

Codeforces Round #114 (Div. 1) E. Wizards and Bets 高斯消元的更多相关文章

  1. Codeforces Round #114 (Div. 1) B. Wizards and Huge Prize 概率dp

    B. Wizards and Huge Prize Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  2. Codeforces Round #114 (Div. 1) A. Wizards and Trolleybuses 物理题

    A. Wizards and Trolleybuses Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...

  3. Codeforces Round #114 (Div. 1) D. Wizards and Roads 笛卡尔树+树贪心+阅读题

    D. Wizards and Roads 题目连接: http://www.codeforces.com/contest/167/problem/D Description In some count ...

  4. Codeforces Round #114 (Div. 1) C. Wizards and Numbers 博弈论

    C. Wizards and Numbers 题目连接: http://codeforces.com/problemset/problem/167/C Description In some coun ...

  5. Codeforces Round #114 (Div. 2)

    Codeforces Round #114 (Div. 2) 代码 Codeforces Round #114 (Div. 2) C. Wizards and Trolleybuses 思路 每条车的 ...

  6. Codeforces Round #327 (Div. 2) A. Wizards' Duel 水题

    A. Wizards' Duel Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/prob ...

  7. CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)

    pro:给定N*M的矩阵,以及初始玩家位置. 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望.保留4位小数. sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N* ...

  8. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  9. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

随机推荐

  1. Python3 使用 urllib 编写爬虫

    什么是爬虫 爬虫,也叫蜘蛛(Spider),如果把互联网比喻成一个蜘蛛网,Spider就是一只在网上爬来爬去的蜘蛛.网络爬虫就是根据网页的地址来寻找网页的,也就是URL.举一个简单的例子,我们在浏览器 ...

  2. Linux 入门记录:四、Linux 系统常用命令

    一.日期时间 命令 date 查看.设置当前系统时间: date -u 格林威治时间 date %Y-%m-%d 显示格式化的时间 date -s "23:00" 使用 -s 参数 ...

  3. 算法题之Median of Two Sorted Arrays

    这道题是LeetCode上的题目,难度级别为5,刚开始做没有找到好的思路,以为是自己智商比较低,后来发现确实也比较低... 题目: There are two sorted arrays nums1  ...

  4. 12-5 NSSet

    原文:http://rypress.com/tutorials/objective-c/data-types/nsset NSSet NSSet, NSArray, and NSDictionary  ...

  5. Solr产品化部署

    1.下载solr-6.4.1.tgz到任意目录 2.执行tar xzf solr-6.4.1.tgz solr-6.4.1/bin/install_solr_service.sh --strip-co ...

  6. 如何简单解释 MapReduce算法

    原文地址:如何简单解释 MapReduce 算法 在Hackbright做导师期间,我被要求向技术背景有限的学生解释MapReduce算法,于是我想出了一个有趣的例子,用以阐释它是如何工作的. 例子 ...

  7. 深入理解python多进程编程

    1.python多进程编程背景 python中的多进程最大的好处就是充分利用多核cpu的资源,不像python中的多线程,受制于GIL的限制,从而只能进行cpu分配,在python的多进程中,适合于所 ...

  8. AC日记——[Hnoi2017]影魔 bzoj 4826

    4826 思路: 主席树矩阵加减+单调栈预处理: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 200005 ...

  9. AC日记——The Shortest Path in Nya Graph hdu 4725

    4725 思路: 拆点建图跑最短路: 代码: #include <cstdio> #include <cstring> #include <iostream> #i ...

  10. React Native 0.56.1初始化项目运行出现错误(Module `AccessibilityInfo` does not exist in the Haste module map)

    当使用react-native init myApp初始化项目时,出现以下错误 出现以上错误的原因是因为0.56.1版本初始化项目就有问题,请见 https://github.com/facebook ...