Codeforces Round #114 (Div. 1) E. Wizards and Bets 高斯消元
E. Wizards and Bets
题目连接:
http://www.codeforces.com/contest/167/problem/E
Description
In some country live wizards. They like to make weird bets.
Two wizards draw an acyclic directed graph with n vertices and m edges (the graph's vertices are numbered from 1 to n). A source is a vertex with no incoming edges, and a sink is the vertex with no outgoing edges. Note that a vertex could be the sink and the source simultaneously. In the wizards' graph the number of the sinks and the sources is the same.
Wizards numbered the sources in the order of increasing numbers of the vertices from 1 to k. The sinks are numbered from 1 to k in the similar way.
To make a bet, they, as are real wizards, cast a spell, which selects a set of k paths from all sources to the sinks in such a way that no two paths intersect at the vertices. In this case, each sink has exactly one path going to it from exactly one source. Let's suppose that the i-th sink has a path going to it from the ai's source. Then let's call pair (i, j) an inversion if i < j and ai > aj. If the number of inversions among all possible pairs (i, j), such that (1 ≤ i < j ≤ k), is even, then the first wizard wins (the second one gives him one magic coin). Otherwise, the second wizard wins (he gets one magic coin from the first one).
Our wizards are captured with feverish excitement, so they kept choosing new paths again and again for so long that eventually they have chosen every possible set of paths for exactly once. The two sets of non-intersecting pathes are considered to be different, if and only if there is an edge, which lies at some path in one set and doesn't lie at any path of another set. To check their notes, they asked you to count the total winnings of the first player for all possible sets of paths modulo a prime number p.
Input
The first line contains three space-separated integers n, m, p (1 ≤ n ≤ 600, 0 ≤ m ≤ 105, 2 ≤ p ≤ 109 + 7). It is guaranteed that p is prime number.
Next m lines contain edges of the graph. Each line contains a pair of space-separated integers, ai bi — an edge from vertex ai to vertex bi. It is guaranteed that the graph is acyclic and that the graph contains the same number of sources and sinks. Please note that the graph can have multiple edges.
Output
Print the answer to the problem — the total winnings of the first player modulo a prime number p. Please note that the winnings may be negative, but the modulo residue must be non-negative (see the sample).
Sample Input
4 2 1000003
1 3
2 4
Sample Output
1
Hint
题意
给你一个有向无环图,然后保证这个图里面有k个点的入度为0,k个点的出度为0
然后现在你需要在这个图里面找k条不相交的路径,使得入度为0的点和出度为0的点一一对应
如果连接的逆序对数为偶数,那么得到一块钱,如果为奇数,就失去一块钱
现在问你所有的情况都找到之和,问你最后你有多少钱
钱需要mod一个数
题解:
假设我们不考虑相交这个条件
那么我们用m[i][j]表示从第i个入度为0的点到第j个出度为0的点的路径数量的话
显然最后的答案就是m这个矩阵的行列式值
这个东西高斯消元就好了
然后我们考虑相交这个东西,其实相交这个东西没什么卵用
假设有1-2,2-3,2-5,4-2这四条边的话
显然答案是0,但是我们考虑相交也没关系,因为正反就抵消了
1-2-3,4-2-5;1-2-5,4-2-3 这样子就抵消了
所以相交这个条件没什么用。
然后搞一搞就完了,这道题
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 650+5;
long long quickpow(long long m,long long n,long long k)//返回m^n%k
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
int n,e,mod;
vector<int> E[maxn];
int in[maxn],out[maxn];
int f[maxn][maxn];
int m[maxn][maxn];
int q[maxn];
int S[maxn],T[maxn];
int k1=1,k2=1;
long long ans = 1;
void guess()
{
for(int i=1;i<k1;i++)
{
if(m[i][i]==0)
{
for(int j=i+1;j<k1;j++)
{
if(m[j][i])
{
for(int k=i;k<k1;k++)
m[i][k]=(m[i][k]+m[j][k])%mod;
break;
}
}
if(m[i][i]==0)
{
puts("0");
return;
}
}
long long inv = quickpow(m[i][i],mod-2,mod);
for(int j=i+1;j<k1;j++)
{
long long temp = m[j][i]*inv%mod;
if(temp==0)continue;
for(int k=i;k<k1;k++)
m[j][k]=(m[j][k]-m[i][k]*temp)%mod;
}
}
for(int i=1;i<k1;i++)
ans = ans*m[i][i]%mod;
if(ans<0)ans+=mod;
cout<<ans<<endl;
}
int main()
{
scanf("%d%d%d",&n,&e,&mod);
for(int i=1;i<=e;i++)
{
int x,y;
scanf("%d%d",&x,&y);
in[y]++,out[x]++;
E[x].push_back(y);
}
for(int i=1;i<=n;i++)
if(in[i]==0)
S[k1++]=i;
for(int i=1;i<=n;i++)
if(out[i]==0)
T[k2++]=i;
int l=1,r=1;
for(int i=1;i<=n;i++)
if(in[i]==0)
q[r++]=i;
while(l<r)
{
int now = q[l++];
for(int i=0;i<E[now].size();i++)
{
in[E[now][i]]--;
if(in[E[now][i]]==0)
q[r++]=E[now][i];
}
}
for(int i=1;i<k1;i++)
f[S[i]][S[i]]=1;
for(int i=1;i<=n;i++)
{
int u = q[i];
for(int j=1;j<k1;j++)
{
int s = S[j];
for(int k=0;k<E[u].size();k++)
f[s][E[u][k]]=(f[s][E[u][k]]+f[s][u])%mod;
}
}
for(int i=1;i<k1;i++)
for(int j=1;j<k1;j++)
m[i][j]=f[S[i]][T[j]];
guess();
}
Codeforces Round #114 (Div. 1) E. Wizards and Bets 高斯消元的更多相关文章
- Codeforces Round #114 (Div. 1) B. Wizards and Huge Prize 概率dp
B. Wizards and Huge Prize Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- Codeforces Round #114 (Div. 1) A. Wizards and Trolleybuses 物理题
A. Wizards and Trolleybuses Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...
- Codeforces Round #114 (Div. 1) D. Wizards and Roads 笛卡尔树+树贪心+阅读题
D. Wizards and Roads 题目连接: http://www.codeforces.com/contest/167/problem/D Description In some count ...
- Codeforces Round #114 (Div. 1) C. Wizards and Numbers 博弈论
C. Wizards and Numbers 题目连接: http://codeforces.com/problemset/problem/167/C Description In some coun ...
- Codeforces Round #114 (Div. 2)
Codeforces Round #114 (Div. 2) 代码 Codeforces Round #114 (Div. 2) C. Wizards and Trolleybuses 思路 每条车的 ...
- Codeforces Round #327 (Div. 2) A. Wizards' Duel 水题
A. Wizards' Duel Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/prob ...
- CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)
pro:给定N*M的矩阵,以及初始玩家位置. 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望.保留4位小数. sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N* ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
随机推荐
- [Leetcode Week14]Maximum Binary Tree
Maximum Binary Tree 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/maximum-binary-tree/description/ ...
- C基础 万能动态数组
引言 - 动态数组切入 开发中动态类型无外乎list 或者 vector, 这里就是在C中实现vector结构容器部分. 对于C中使用的数据结构, 可以参照下面感觉很不错框架源码学习 , 感觉是< ...
- 设计模式之笔记--抽象工厂模式(Abstract Factory)
抽象工厂模式(Abstract Factory) 定义 抽象工厂模式(Abstract Factory),提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类. 类图 描述 多个抽象产品 ...
- edittext 的一个案例
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android= ...
- C#文件路径乱码
最近学C#,用C#写serialport遇到了一点小问题记录一下. 问题一: if (!string.IsNullOrEmpty(filePath.ToString())) { try { fs = ...
- Python Flask wtfroms组件
简介 WTForms是一个支持多个web框架的form组件,主要用于对用户请求数据进行验证. 安装: pip3 install wtforms 用户登录注册示例 1. 用户登录 当用户登录时候,需要对 ...
- 深度学习方法(六):神经网络weight参数怎么初始化
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 神经网络,或者深度学习算法的参数初始 ...
- hdu 1114(完全背包)
Piggy-Bank Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- 【hdoj_1398】SquareCoins(母函数)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1398 此题采用母函数的知识求解,套用母函数模板即可: http://blog.csdn.net/ten_s ...
- SecureCrt的操持连接办法
保持连接: options -> global options -> General -> Default Session,点击Edit default settings按钮,在Te ...