Codeforces Round #114 (Div. 1) E. Wizards and Bets 高斯消元
E. Wizards and Bets
题目连接:
http://www.codeforces.com/contest/167/problem/E
Description
In some country live wizards. They like to make weird bets.
Two wizards draw an acyclic directed graph with n vertices and m edges (the graph's vertices are numbered from 1 to n). A source is a vertex with no incoming edges, and a sink is the vertex with no outgoing edges. Note that a vertex could be the sink and the source simultaneously. In the wizards' graph the number of the sinks and the sources is the same.
Wizards numbered the sources in the order of increasing numbers of the vertices from 1 to k. The sinks are numbered from 1 to k in the similar way.
To make a bet, they, as are real wizards, cast a spell, which selects a set of k paths from all sources to the sinks in such a way that no two paths intersect at the vertices. In this case, each sink has exactly one path going to it from exactly one source. Let's suppose that the i-th sink has a path going to it from the ai's source. Then let's call pair (i, j) an inversion if i < j and ai > aj. If the number of inversions among all possible pairs (i, j), such that (1 ≤ i < j ≤ k), is even, then the first wizard wins (the second one gives him one magic coin). Otherwise, the second wizard wins (he gets one magic coin from the first one).
Our wizards are captured with feverish excitement, so they kept choosing new paths again and again for so long that eventually they have chosen every possible set of paths for exactly once. The two sets of non-intersecting pathes are considered to be different, if and only if there is an edge, which lies at some path in one set and doesn't lie at any path of another set. To check their notes, they asked you to count the total winnings of the first player for all possible sets of paths modulo a prime number p.
Input
The first line contains three space-separated integers n, m, p (1 ≤ n ≤ 600, 0 ≤ m ≤ 105, 2 ≤ p ≤ 109 + 7). It is guaranteed that p is prime number.
Next m lines contain edges of the graph. Each line contains a pair of space-separated integers, ai bi — an edge from vertex ai to vertex bi. It is guaranteed that the graph is acyclic and that the graph contains the same number of sources and sinks. Please note that the graph can have multiple edges.
Output
Print the answer to the problem — the total winnings of the first player modulo a prime number p. Please note that the winnings may be negative, but the modulo residue must be non-negative (see the sample).
Sample Input
4 2 1000003
1 3
2 4
Sample Output
1
Hint
题意
给你一个有向无环图,然后保证这个图里面有k个点的入度为0,k个点的出度为0
然后现在你需要在这个图里面找k条不相交的路径,使得入度为0的点和出度为0的点一一对应
如果连接的逆序对数为偶数,那么得到一块钱,如果为奇数,就失去一块钱
现在问你所有的情况都找到之和,问你最后你有多少钱
钱需要mod一个数
题解:
假设我们不考虑相交这个条件
那么我们用m[i][j]表示从第i个入度为0的点到第j个出度为0的点的路径数量的话
显然最后的答案就是m这个矩阵的行列式值
这个东西高斯消元就好了
然后我们考虑相交这个东西,其实相交这个东西没什么卵用
假设有1-2,2-3,2-5,4-2这四条边的话
显然答案是0,但是我们考虑相交也没关系,因为正反就抵消了
1-2-3,4-2-5;1-2-5,4-2-3 这样子就抵消了
所以相交这个条件没什么用。
然后搞一搞就完了,这道题
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 650+5;
long long quickpow(long long m,long long n,long long k)//返回m^n%k
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
int n,e,mod;
vector<int> E[maxn];
int in[maxn],out[maxn];
int f[maxn][maxn];
int m[maxn][maxn];
int q[maxn];
int S[maxn],T[maxn];
int k1=1,k2=1;
long long ans = 1;
void guess()
{
for(int i=1;i<k1;i++)
{
if(m[i][i]==0)
{
for(int j=i+1;j<k1;j++)
{
if(m[j][i])
{
for(int k=i;k<k1;k++)
m[i][k]=(m[i][k]+m[j][k])%mod;
break;
}
}
if(m[i][i]==0)
{
puts("0");
return;
}
}
long long inv = quickpow(m[i][i],mod-2,mod);
for(int j=i+1;j<k1;j++)
{
long long temp = m[j][i]*inv%mod;
if(temp==0)continue;
for(int k=i;k<k1;k++)
m[j][k]=(m[j][k]-m[i][k]*temp)%mod;
}
}
for(int i=1;i<k1;i++)
ans = ans*m[i][i]%mod;
if(ans<0)ans+=mod;
cout<<ans<<endl;
}
int main()
{
scanf("%d%d%d",&n,&e,&mod);
for(int i=1;i<=e;i++)
{
int x,y;
scanf("%d%d",&x,&y);
in[y]++,out[x]++;
E[x].push_back(y);
}
for(int i=1;i<=n;i++)
if(in[i]==0)
S[k1++]=i;
for(int i=1;i<=n;i++)
if(out[i]==0)
T[k2++]=i;
int l=1,r=1;
for(int i=1;i<=n;i++)
if(in[i]==0)
q[r++]=i;
while(l<r)
{
int now = q[l++];
for(int i=0;i<E[now].size();i++)
{
in[E[now][i]]--;
if(in[E[now][i]]==0)
q[r++]=E[now][i];
}
}
for(int i=1;i<k1;i++)
f[S[i]][S[i]]=1;
for(int i=1;i<=n;i++)
{
int u = q[i];
for(int j=1;j<k1;j++)
{
int s = S[j];
for(int k=0;k<E[u].size();k++)
f[s][E[u][k]]=(f[s][E[u][k]]+f[s][u])%mod;
}
}
for(int i=1;i<k1;i++)
for(int j=1;j<k1;j++)
m[i][j]=f[S[i]][T[j]];
guess();
}
Codeforces Round #114 (Div. 1) E. Wizards and Bets 高斯消元的更多相关文章
- Codeforces Round #114 (Div. 1) B. Wizards and Huge Prize 概率dp
B. Wizards and Huge Prize Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- Codeforces Round #114 (Div. 1) A. Wizards and Trolleybuses 物理题
A. Wizards and Trolleybuses Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...
- Codeforces Round #114 (Div. 1) D. Wizards and Roads 笛卡尔树+树贪心+阅读题
D. Wizards and Roads 题目连接: http://www.codeforces.com/contest/167/problem/D Description In some count ...
- Codeforces Round #114 (Div. 1) C. Wizards and Numbers 博弈论
C. Wizards and Numbers 题目连接: http://codeforces.com/problemset/problem/167/C Description In some coun ...
- Codeforces Round #114 (Div. 2)
Codeforces Round #114 (Div. 2) 代码 Codeforces Round #114 (Div. 2) C. Wizards and Trolleybuses 思路 每条车的 ...
- Codeforces Round #327 (Div. 2) A. Wizards' Duel 水题
A. Wizards' Duel Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/prob ...
- CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)
pro:给定N*M的矩阵,以及初始玩家位置. 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望.保留4位小数. sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N* ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
随机推荐
- 土司论坛nc反弹神器使用方法
说明: PS:我本机是linux,因为没有服务器所以使用win7来演示.倘若你是windows可以在本机生成dll以后再放到服务器上面去执行dll即可反弹shell物理机ip:192.168.1.12 ...
- js原生读取json
function showJson(){ var test; if(window.XMLHttpRequest){ test = new XMLHttpRequest(); }else if(wind ...
- MFC不同工程(解决方案)之间对话框资源的复制与重用方法(转)
原文转自 https://blog.csdn.net/lihui126/article/details/45556687
- mysql cast函数
CAST函数语法规则是:Cast(字段名 as 转换的类型 ),其中类型可以为: CHAR[(N)] 字符型 DATE 日期型DATETIME 日期和时间型DECIMAL float型SIGNED i ...
- TCP之Nagle算法&&延迟ACK
1. Nagle算法: 是为了减少广域网的小分组数目,从而减小网络拥塞的出现: 该算法要求一个tcp连接上最多只能有一个未被确认的未完成的小分组,在该分组ack到达之前不能发送其他的小分组,tcp需要 ...
- python设计模式之单例模式(二)
上次我们简单了解了一下什么是单例模式,今天我们继续探究.上次的内容点这 python设计模式之单例模式(一) 上次们讨论的是GoF的单例设计模式,该模式是指:一个类有且只有一个对象.通常我们需要的是让 ...
- 运输层和TCP/IP协议
0. 基本要点 运输层是为相互通信的应用进程提供逻辑通信. 端口和套接字的意义 什么是无连接UDP 什么是面向连接的TCP 在不可靠的网络上实现可靠传输的工作原理,停止等待协议和ARQ协议 TCP的滑 ...
- Guice2.0的变化——第一部分 新的特性(上)
http://superleo.iteye.com/blog/314816 Private Modules PrivateModules 用于创建并不需要对外可见的绑定对象.当然,这样会使得封装变得更 ...
- 原生DOM选择器querySelector和querySelectorAll
在传统的 JavaScript 开发中,查找 DOM 往往是开发人员遇到的第一个头疼的问题,原生的 JavaScript 所提供的 DOM 选择方法并不多,仅仅局限于通过 tag, name, id ...
- 查看linux版本及lsb_release安装及一些想法
https://blog.csdn.net/darkdragonking/article/details/61194308