很简洁的题目。求出x^2%n=1的所有x<=n的值。 n<=2e9.

直接枚举x一定是超时的。 看看能不能化成有性质的式子。

有 (x+1)(x-1)%n==0,设n=a*b,那么一定有x+1=k1a,x-1=k2b. 不妨设a<=b.那么就能O(sqrt(n))枚举a。

然后再枚举x,验证x是否满足这两个式子。注意不能令x=k1a-1.由于a比较小,枚举x=k2b+1,k2b-1即可。

另外set很好用啊。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... set<LL>::iterator it;
set<LL>S; int main ()
{
LL a, b, x, n;
scanf("%lld",&n);
for (int i=; i*i<=n; ++i) {
if (n%i) continue;
a=i; b=n/i;
for (int k=; (x=b*k+)<n; ++k) if ((x+)%a==) S.insert(x);
for (int k=; (x=b*k-)<n; ++k) if ((x-)%a==) S.insert(x);
}
for (it=S.begin(); it!=S.end(); ++it) printf("%lld\n",*it);
return ;
}

BZOJ 1406 密码箱(数论)的更多相关文章

  1. BZOJ 1406 密码箱

    直接两层枚举就行了. 避免排序可以用set. #include<iostream> #include<cstdio> #include<cstring> #incl ...

  2. BZOJ 1406: [AHOI2007]密码箱

    二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...

  3. BZOJ 1406: [AHOI2007]密码箱( 数论 )

    (x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...

  4. bzoj 1406: [AHOI2007]密码箱 二次剩餘

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 701  Solved: 396[Submit][Status] D ...

  5. bzoj 1406 数论

    首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0 ...

  6. 【BZOJ 1406】 [AHOI2007]密码箱

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(x^2%n=1\) \(x^2-1 = k*n\) \((x+1)*(x-1) % n == 0\) 设\(n=a*b\) 对于 ...

  7. BZOJ 1406: [AHOI2007]密码箱 exgcd+唯一分解定理

    推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 5000 ...

  8. BZOJ 2142 礼物 数论

    这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. ...

  9. 【bzoj1406】 AHOI2007密码箱 数论

    在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示.经过艰苦的破译,小可可发现,这些图标表示一个数 ...

随机推荐

  1. CSS 兼容iPhone X、iPhone XS及iPhone XR

    @media only screen and (device-width: 375px) and (device-height: 812px) and (-webkit-device-pixel-ra ...

  2. javascript array.property.slice.call

    function foo() { //var var1=Array.prototype.slice.call(arguments); var var1=[].slice.call(arguments) ...

  3. springBoot cache操作2

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/zxd1435513775/article/details/85091793一.基本项目搭建测试项目是 ...

  4. Python 列表下标操作

    Python  列表下标操作 引用网址: https://www.jianshu.com/p/a98e935e4d46

  5. thinkphp5使用workerman的定时器定时任务在某一个时间执行

    1.首先通过 composer 安装workerman,在thinkphp5完全开发手册的扩展->coposer包->workerman有详细说明: #在项目根目录执行以下指令compos ...

  6. 苏醒的巨人----CSRF

    一.CSRF 跨站请求伪造(Cross-Site Request Forgery,CSRF)是指利用 受害者尚未失效的身份认证信息(cookie.会话等),诱骗其点 击恶意链接或者访问包含攻击代码的页 ...

  7. 现实世界中的 Python

    Python 有多稳定? 非常稳定. 自 1991 年起大约每隔 6 到 18 个月就会推出新的稳定发布版,这种状态看来还将持续下去. 目前主要发布版本的间隔通常为 18 个月左右. 开发者也会推出旧 ...

  8. 213. String Compression【LintCode java】

    Description Implement a method to perform basic string compression using the counts of repeated char ...

  9. 浅谈PCA

    最近在回顾PCA方面的知识,发现对于之前的很多东西有了新的理解,下面和大家分享下我的一些个人的理解 1.我们为什么要用PCA,它能解决我什么问题? PCA(Principal Component An ...

  10. LeetCode 144 ——二叉树的前序遍历

    1. 题目 2. 解答 2.1. 递归法 定义一个存放树中数据的向量 data,从根节点开始,如果节点不为空,那么 将当前节点的数值加入到 data 中 递归得到其左子树的数据向量 temp,将 te ...