很简洁的题目。求出x^2%n=1的所有x<=n的值。 n<=2e9.

直接枚举x一定是超时的。 看看能不能化成有性质的式子。

有 (x+1)(x-1)%n==0,设n=a*b,那么一定有x+1=k1a,x-1=k2b. 不妨设a<=b.那么就能O(sqrt(n))枚举a。

然后再枚举x,验证x是否满足这两个式子。注意不能令x=k1a-1.由于a比较小,枚举x=k2b+1,k2b-1即可。

另外set很好用啊。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... set<LL>::iterator it;
set<LL>S; int main ()
{
LL a, b, x, n;
scanf("%lld",&n);
for (int i=; i*i<=n; ++i) {
if (n%i) continue;
a=i; b=n/i;
for (int k=; (x=b*k+)<n; ++k) if ((x+)%a==) S.insert(x);
for (int k=; (x=b*k-)<n; ++k) if ((x-)%a==) S.insert(x);
}
for (it=S.begin(); it!=S.end(); ++it) printf("%lld\n",*it);
return ;
}

BZOJ 1406 密码箱(数论)的更多相关文章

  1. BZOJ 1406 密码箱

    直接两层枚举就行了. 避免排序可以用set. #include<iostream> #include<cstdio> #include<cstring> #incl ...

  2. BZOJ 1406: [AHOI2007]密码箱

    二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...

  3. BZOJ 1406: [AHOI2007]密码箱( 数论 )

    (x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...

  4. bzoj 1406: [AHOI2007]密码箱 二次剩餘

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 701  Solved: 396[Submit][Status] D ...

  5. bzoj 1406 数论

    首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0 ...

  6. 【BZOJ 1406】 [AHOI2007]密码箱

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(x^2%n=1\) \(x^2-1 = k*n\) \((x+1)*(x-1) % n == 0\) 设\(n=a*b\) 对于 ...

  7. BZOJ 1406: [AHOI2007]密码箱 exgcd+唯一分解定理

    推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 5000 ...

  8. BZOJ 2142 礼物 数论

    这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. ...

  9. 【bzoj1406】 AHOI2007密码箱 数论

    在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示.经过艰苦的破译,小可可发现,这些图标表示一个数 ...

随机推荐

  1. C#实现窗口最小化到系统托盘

    先添加notifyicon控件notifyIcon1 using System; using System.Collections.Generic; using System.ComponentMod ...

  2. 苏州Uber优步司机奖励政策(8月31日至9月6日)

    当周最新司机奖励(8月31日至9月6日) 滴滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http: ...

  3. <进阶版>Markdown指南

    有道云笔记内置Markdown编辑器和使用指南. “进阶版”有道云笔记Markdown指南,教你如何进一步掌握待办.清单.流程图和甘特图. 0 待办和清单 待办事项和清单在日常工作.生活中经常被使用. ...

  4. Java:多线程中的volatile

    一.为什么使用volatile 首先,通过一段简单的代码来理解为什么要使用volatile: public class RunThread extends Thread{ private boolea ...

  5. Android事件分发机制浅析(1)

    本文来自网易云社区 作者:孙有军 事件机制是Android中一个比较复杂且重要的知识点,比如你想自定义拦截事件,或者某系组件中嵌套了其他布局,往往会出现这样那样的事件冲突,坑爹啊!!事件主要涵盖onT ...

  6. JSP学习(JavaBean)

    Java Web学习 一.搭建java web开发环境: (1)安装jdk (2)安装Tomcat服务器(Apache的开源项目),安装Tomcat并设置环境变量 (3)安装EclipseEE(或者M ...

  7. Qt-QSplashScreen-程序启动动画

    多数大型应用程序启动时可会在程序完全启动前显示一个启动画面,在程序完全启动后消失,程序启动画面可以显示相关产品的一些信息,使用户在等待程序启动时同时了解产品的相关功能,这也是一种宣传方式. 首先运行界 ...

  8. 使用gitlab时候 fork仓库不会实时从主仓库更新解决方案

    付费用户可以使用现成的方案,地址见 链接 但是私有gitlab时候,需要手动进行如下操作 1. Clone your fork: git clone git@github.com:YOUR-USERN ...

  9. Siki_Unity_0_Unity A计划直播视频

    Unity A计划直播视频 2017-07-04直播 任务1:如何识别以招聘来招培训生的公司: 打着招聘的旗号帮培训机构找培训生 关键词:实训生 任务2:如何识别一个公司的好坏和规模大小: 猎聘(中高 ...

  10. @ConfigurationProperties注解对数据的自动封装

    @ConfigurationProperties注解对数据的自动封装 @ConfigurationProperties可以对基本数据类型实现自动封装,可以封装格式为yyyy/MM/dd的日期 测试代码 ...