[HNOI2004]树的计数 prufer数列
题面:
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,你的程序需要输出满足d(vi)=di的树的个数。
题解:
乍一看是组合数学,,,当然了,实际上也是组合数。
只不过要是知道prufer数列就很简单了。
那先来看看prufer数列吧!
同时,prufer数列还支持再转化为树:
设{a1,a2,..an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1..n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。 ------------------------------摘自百度百科
这里我们可以观察到,树和prufer数列是一一对应的关系,也就是说一棵树的prufer数列是唯一确定的,同理,一个prufer数列对应的树也是唯一确定的,
这就非常妙妙了。
我们通过观察将树转化为prufer数列的方法可以得知,一个点在prufer数列中出现的次数实际上就是一个点的入度-1,
也就是说这道题实际上是:
给定prufer数列的限制条件,求树的种数
然后我们又知道树和prufer数列是一一对应的,所以题面就变成了:
给定prufer数列中各个点的出现次数,求prufer数列不重复的全排列
那做法就很清晰了
因为prufer数列的长度是n-2,(看上面的转换方法很容易发现)
所以全排列是(n-2)!,但是由于有重复出现的点,因此这些排列中会有很多重复的,
有哪些重复呢?
稍微了解一点组合数相关知识就知道了,
假设点i出现了x次,那么对于任意一次排列,这x个相同的点都有x!种排列方式,
因此一种排列就会因为点i而被多计算x!次,其他也是一样的,
所以总的公式就是
(n-2)!/(s[1]! * s[2]!.....)
其中s[i]表示点i在prufer数列中的出现次数(也就是入度-1)
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 170
#define LL long long
int n,all;
int s[AC];
LL ans;
/*prufer序列emmmm,,,
貌似说的还是比较有道理的?
任意prufer序列可以对应唯一确定的树,所以可以求prufer序列的不重复的全排列
通过求prufer序列的过程可以感知到,,,一个点在prufer序列中的出现次数,应当是其度数-1
因此这里给出了度数,也就相当于给出了prufer序列,那么对其求不重复的全排列即可 一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。
上面这句话比较重要。通过上面的定理,
1)我们可以直接推出n个点的无向完全图的生成树的计数:n^(n-2) 即n个点的有标号无根树的计数。
2)一个有趣的推广是,n个节点的度依次为D1, D2, …, Dn的无根树共有 (n-2)! / [ (D1-1)!(D2-1)!..(Dn-1)! ] 个,
因为此时Prüfer编码中的数字i恰好出现Di-1次。
即 n种元素,共n-2个,其中第i种元素有Di-1个,求排列数。
3)n个节点的度依次为D1, D2, …, Dn,令有m个节点度数未知,求有多少种生成树?(BZOJ1005 明明的烦恼)
令每个已知度数的节点的度数为di,有n个节点,m个节点未知度数,left=(n-2)-(d1-1)-(d2-1)-...-(dk-1)
已知度数的节点可能的组合方式如下
(n-2)!/(d1-1)!/(d2-1)!/.../(dk-1)!/left!
剩余left个位置由未知度数的节点随意填补,方案数为m^left
于是最后有
ans=(n-2)!/(d1-1)!/(d2-1)!/.../(dk-1)!/left! * m^left
by https://www.cnblogs.com/dirge/p/5503289.html */
int read()
{
int x=;char c=getchar();
while(c > '' || c < '') c=getchar();
while(c >= '' && c <= '') x=x* + c - '',c=getchar();
return x;
} void pre()
{
n=read();
for(R i=;i<=n;i++)
{
s[i]=read() - , all+=s[i] + ;
if(s[i] < && n != )//error!!! 如果只有一个节点的话是可以允许没有边的
{//但也要注意将边都集中在某几个点上以至于后面的点不合法的情况
printf("0\n");
exit();
}
}
if(all != * n - )//如果是不合法数据就直接退了
{
printf("0\n");
exit();
}
} void work()
{
ans=;
for(R i=n-; i> ;i--)//也许从高处开始乘会减少爆的可能性?毕竟除也是从高处开始的
{
ans *= i;
for(R j=;j<=n;j++)//防爆措施
{
if(s[j] <= ) continue;
while(!(ans % s[j]))
{
ans/=s[j],--s[j];
if(s[j] == ) break;
}
}
}
printf("%lld\n",ans);
} int main()
{
// freopen("in.in","r",stdin);
pre();
work();
// fclose(stdin);
return ;
}
[HNOI2004]树的计数 prufer数列的更多相关文章
- BZOJ 1211[HNOI2004]树的计数 - prufer数列
描述 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi) ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...
- bzoj1211: [HNOI2004]树的计数 prufer序列裸题
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...
- BZOJ1211: [HNOI2004]树的计数(prufer序列)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2987 Solved: 1111[Submit][Status][Discuss] Descript ...
- [HNOI2004] 树的计数 - prufer序列
给定树每个节点的 degree,问满足条件的树的数目. \(n\leq 150, ans \leq 10^{17}\) Solution 注意特判各种坑点 \(\sum d_i - 1 = n-2\) ...
- P2290 [HNOI2004]树的计数
P2290 [HNOI2004]树的计数prufer序列模板题 #include <iostream> #include <cstdio> #include <queue ...
随机推荐
- CentOS 5/6上安装EPEL源
转自:http://www.vckai.com/p/25 EPEL 是什么? EPEL (Extra Packages for Enterprise Linux,企业版Linux的额外软件包) 是Fe ...
- git 取消commit
git如何撤销上一次commit操作 1.第一种情况:还没有push,只是在本地commit git reset --soft|--mixed|--hard <commit_id> git ...
- RSA加密通信小结(一)
一.背景描述 帮朋友完成相关方案的改进. 二.计划与方案 1.加密方式采用RSA 1024加密. 2.发送与接收都采用RSA加密,采用两套不同的密钥. 3.统一的加解码函数.(此处除了对于传输数据进行 ...
- 180602-nginx多域名配置
文章链接:https://liuyueyi.github.io/hexblog/2018/06/02/180602-nginx多域名配置/ nginx多域名配置 原来的域名过期了,重新买了一个hhui ...
- Android Studio怎样创建App项目
然后等待大约N分钟: 默认的是Android模式, 改为Project模式更符合我们的习惯:
- leetcode-最长无重复字符的子串
参考他的人代码:https://blog.csdn.net/littlebai07/article/details/79100081 给定一个字符串,找出不含有重复字符的最长子串的长度. 示例 1: ...
- 悲剧文本(Broken Keyboard (a.k.a. Beiju Text),UVA 11988)
题目描述: 题目思路: 1.使用链表来重新定位各个字符 2.用数组实现链表 3.开一个数组list[i]来存储字符数组下一个字符的位置 #include <iostream> #inclu ...
- kafka stream 低级别的Processor API动态生成拓扑图
public class KafkaSream { public static void main(String[] args) { Map<String, Object> props = ...
- 【转】Keepalived+Tengine实现高可用集群
原文出处:http://502245466.blog.51cto.com/7559397/1301772 概述 近年来随着Nginx在国内的发展潮流,越来越多的互联网公司使用Nginx:凭Nginx的 ...
- es6从零学习(一)let 和 const 命令
es6从零学习(一):let 和 const 命令 一:let 变量 1.块级作用域{}:let只在自己的块级作用域内有效. for(let i =0;i<3;i++) { console.lo ...