题目大意:给一棵树,求其中最大的“毛毛虫”,毛毛虫的定义是一条链上分出几条边

题解:把每个点的权值定义为它的度数减一,跑带权直径即可,最后答案加二

卡点:

C++ Code:

#include <cstdio>
#include <cctype>
namespace __IO {
namespace R {
int x, ch;
inline int read() {
ch = getchar();
while (isspace(ch)) ch = getchar();
for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15);
return x;
}
}
}
using __IO::R::read; inline int max(int a, int b) {return a > b ? a : b;} #define maxn 300010
int head[maxn], cnt;
struct Edge {
int to, nxt;
} e[maxn << 1];
inline void add(int a, int b) {
e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt;
} int n, m;
int w[maxn];
int max1[maxn], max2[maxn], ans = -20040826;
int dfs(int u, int fa = 0) {
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
int tmp = dfs(v, u);
if (tmp > max1[u]) {
max2[u] = max1[u];
max1[u] = tmp;
} else if (tmp > max2[u]) max2[u] = tmp;
}
}
max1[u] += w[u];
ans = max(ans, max1[u] + max2[u]);
return max1[u];
}
int main() {
n = read(), m = read();
for (int i = 1, a, b; i < n; i++) {
a = read(), b = read();
add(a, b);
w[a]++, w[b]++;
}
for (int i = 1; i <= n; i++) w[i]--;
dfs(1);
printf("%d\n", ans + 2);
return 0;
}

  

[洛谷P3174][HAOI2009]毛毛虫的更多相关文章

  1. 洛谷 3174 [HAOI2009]毛毛虫

    题目描述 对于一棵树,我们可以将某条链和与该链相连的边抽出来,看上去就象成一个毛毛虫,点数越多,毛毛虫就越大.例如下图左边的树(图 1 )抽出一部分就变成了右边的一个毛毛虫了(图 2 ). 输入输出格 ...

  2. P3174 [HAOI2009]毛毛虫(树形dp)

    P3174 [HAOI2009]毛毛虫 题目描述 对于一棵树,我们可以将某条链和与该链相连的边抽出来,看上去就象成一个毛毛虫,点数越多,毛毛虫就越大.例如下图左边的树(图 1 )抽出一部分就变成了右边 ...

  3. P3174 [HAOI2009]毛毛虫

    题目描述 对于一棵树,我们可以将某条链和与该链相连的边抽出来,看上去就象成一个毛毛虫,点数越多,毛毛虫就越大.例如下图左边的树(图 1 )抽出一部分就变成了右边的一个毛毛虫了(图 2 ). 输入输出格 ...

  4. 洛谷P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...

  5. 洛谷——P3173 [HAOI2009]巧克力

    P3173 [HAOI2009]巧克力 题目描述 有一块n*m的矩形巧克力,准备将它切成n*m块.巧克力上共有n-1条横线和m-1条竖线,你每次可以沿着其中的一条横线或竖线将巧克力切开,无论切割的长短 ...

  6. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  7. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  8. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  9. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

随机推荐

  1. SpringBoot-03:SpringBoot+Idea热部署

      ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 所谓热部署,就是在项目启动中,修改class类中做的修改操作,无需重新启动项目,就可以变更,在网页展示中有 ...

  2. CSS3 子节点选择器

    CSS3中新增了几个子元素选择器,大大提高了开发者的开发效率.之前有些要通过为一个个子元素添加class,或者js实现才能实现的效果.现在可以很方便的用选择器实现. 这些新的样式已被现代浏览器及IE9 ...

  3. iReport jasperReports 生成表格

    使用iReport生成表格   一 环境:iReport-5.6.0  JDK7 1.注意,iReport的最新版本目前还不支持JDK8,如果项目工程已经配置了JDK8,那也不用去修改环境变量和工程的 ...

  4. [转帖]localhost与127.0.0.1的区别

    localhost与127.0.0.1的区别 https://www.cnblogs.com/hqbhonker/p/3449975.html 前段时间用PG的时候总有问题 当时没有考虑 localh ...

  5. BBU+RRU基本介绍

    现代移动通信网络中的数模转化架构:RRU+BBU: 因为学习需要了解RRU+BBU.特此网上查找了一番,找到了一些还不错的解释,分享给大家! BBU与RRU的区别: 通常大型建筑物内部的层间有楼板,房 ...

  6. CentOS 7.2 安装zabbix 3.4

    一.zabbix版本选择及部署环境说明 1.zabbix版本选择 zabbix官网地址:www.zabbix.com zabbix每半年发布一个长期支持版,目前长期支持版有2.0.3.0等,所以选择z ...

  7. nginx 重启报错

    错误信息: nginx: [error] open() "/usr/local/nginx/logs/nginx.pid" failed (2: No such file or d ...

  8. appium启动APP配置参数:

    一.Android启动app   python启动脚本如下:   from appium import webdriver   desired_caps = {} desired_caps['plat ...

  9. Python基础 之 set集合 与 字符串格式化

    数据类型的回顾与总结 可变与不可变1.可变:列表,字典2.不可变:字符串,数字,元组 访问顺序:1.直接访问:数字2.顺序访问:字符串,列表,元祖3.映射:字典 存放元素个数:容器类型:列表,元祖,字 ...

  10. 【机器学习】多项式回归python实现

    [机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用python实现多项式回归,没有使用sklearn等机器学习框架,目的是帮助理解算 ...