LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)
题目描述
给出一个长为 nn 的数列,以及 nn 个操作,操作涉及区间加法,区间求和。
输入格式
第一行输入一个数字 nn。
第二行输入 nn 个数字,第 ii 个数字为 a_iai,以空格隔开。
接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}opt、ll、rr、cc,以空格隔开。
若 \mathrm{opt} = 0opt=0,表示将位于 [l, r][l,r] 的之间的数字都加 cc。
若 \mathrm{opt} = 1opt=1,表示询问位于 [l, r][l,r] 的所有数字的和 \bmod (c+1)mod(c+1)。
输出格式
对于每次询问,输出一行一个数字表示答案。
样例
样例输入
4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4
样例输出
1
4
数据范围与提示
对于 100\%100% 的数据,1 \leq n \leq 50000, -2^{31} \leq \mathrm{others}1≤n≤50000,−231≤others、\mathrm{ans} \leq 2^{31}-1ans≤231−1。
代码;
//#6280. 数列分块入门 4-区间加法,区间求和
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e4+; int n,m,pos[maxn];
ll a[maxn],b[maxn],tag[maxn]; void update(int l,int r,ll c)
{
for(int i=l;i<=min(pos[l]*m,r);i++){
a[i]+=c;
b[pos[l]]+=c;
}
if(pos[l]!=pos[r]){
for(int i=(pos[r]-)*m+;i<=r;i++){
a[i]+=c;
b[pos[r]]+=c;
}
}
for(int i=pos[l]+;i<pos[r];i++){
tag[i]+=c;
}
} ll query(int l,int r)
{
ll ans=;
for(int i=l;i<=min(pos[l]*m,r);i++){
ans+=a[i]+tag[pos[l]];
}
if(pos[l]!=pos[r]){
for(int i=(pos[r]-)*m+;i<=r;i++){
ans+=a[i]+tag[pos[r]];
}
}
for(int i=pos[l]+;i<pos[r];i++){
ans+=b[i]+tag[i]*m;
}
return ans;
} int main()
{
scanf("%d",&n);
m=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
pos[i]=(i-)/m+;
}
for(int i=;i<=m+;i++){
int cnt=;
for(int j=(i-)*m+;j<=min(i*m,n);j++){
cnt+=a[j];
}
b[i]=cnt;
}
for(int i=;i<=n;i++){
int op,l,r;
ll c;
scanf("%d%d%d%lld",&op,&l,&r,&c);
if(op==){
update(l,r,c);
}
else{
printf("%lld\n",query(l,r)%(c+));
}
}
} /*
10
1 3 4 2 5 7 11 3 5 1
0 1 5 1
1 1 7 2
0 3 9 1
1 4 8 7
1 1 10 6
1 3 5 3
1 5 10 7
1 6 10 6
1 2 7 4
1 2 7 5 2
3
5
1
6
3
1
5
*/
LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)的更多相关文章
- 树状数组区间加法&区间求和操作
树状数组区间加法&区间求和操作 一般的树状数组解决区间加&单点询问并不复杂 但是要解决区间求和... 我们假设原数组是\(\{a_i\}\),差分数组\(\{d_i=a_i-a_{i- ...
- LOJ-6279-数列分块入门3(分块, 二分)
链接: https://loj.ac/problem/6279 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的前驱(比其小的最大元素). 思路: 同样的分块加二 ...
- LOJ-6278-数列分块入门2(分块)
链接: https://loj.ac/problem/6278 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的元素个数. 思路: 分块,用vector维护每个区 ...
- LOJ-6277-数列分块入门1(分块)
链接: https://loj.ac/problem/6277 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,单点查值. 思路: 线段树可以解决,用来学习分块. 分块概念就是,将序列分 ...
- bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...
- LibreOJ 6280 数列分块入门 4(分块区间加区间求和)
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...
- LOJ#6280. 数列分块入门 4
另外开一个数组维护每一个块内的总和. 给区间加值是,残余的块一个一个点更新,整个的块一次性更新 查询的时候也是,残余的块一个一个点加,整个的块一次性加 #include<map> #inc ...
- LOJ.6281.数列分块入门5(分块 区间开方)
题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...
- LOJ.6284.数列分块入门8(分块)
题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...
随机推荐
- kvm增加硬盘挂载
1.查询需要添加虚拟主机 [root@sz-kvm-110 images]# virsh list --all Id 名称 状态 ------- ...
- 51Nod 1007 正整数分组 | DP (01背包)
Input示例 5 1 2 3 4 5 Output示例 1 分析:2组的差最小,那么每一组都要接近sum/2,这样就转化成了普通的0 - 1背包了 #include <bits/stdc++. ...
- Linux下设置mysql和tomcat开机启动
本文基于CentOS 64位 一.mysql设置开机启动 1.cp /usr/local/mysql/support-files/mysql.server /etc/init.d/mysql ...
- 【BZOJ】1598: [Usaco2008 Mar]牛跑步
[题意]给定有向图,边严格从大编号指向小编号,求前k短路.n<=1000,m<=10000,k<=100. [算法]归并+拓扑排序||A*求第k短路 [题解]因为此题自带拓扑序的特殊 ...
- Windows Phone 8.1基础教程(1) 页面导航、弹出框
1. 跳转到其他页面 Frame.Navigate(typeof(页面),参数); 2. 后退回历史页面 Frame.GoBack(); 3. 回跳时判断 if(e.NavigationMode == ...
- 2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛 H. Skiing (拓扑排序+假dp)
题目链接:https://nanti.jisuanke.com/t/16957 题目: In this winter holiday, Bob has a plan for skiing at the ...
- hdu 2962 Trucking (二分+最短路Spfa)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...
- 使用ubuntun16.04代码笔记
(1)cd /代表到根目录下面:ls表示将盘中内容列出:cd /home表是打开根目录下的home文件夹:(注意:凡是根目录下的文件夹前面都要加 /) (2)快捷键方式:可以用tab自动补全 (1 ...
- CART算法(转)
来源:http://www.cnblogs.com/pinard/p/6053344.html 作者:刘建平Pinard 对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了 ...
- Java案例之士兵作战功能实现
实现的功能比较简单,主要用到了多态的,抽象类以及模板方法模式这几个知识点.效果图如下,哈哈 ,大神勿喷,后面我会把这些知识点详细介绍出来,即使Java学的不好,只要有一点其他语言基础或者没有应该都能看 ...