给你一个n个初始元素都为1的序列和m个询问q。

询问格式为:l r x(x为2or3)

最后求1~n所有数的GCD

GCD:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define mod 998244353 #define pi acos(-1.0)
#define rep(i,x,n) for(int i=(x); i<(n); i++)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 1<<30;
const int maxn = 1e5+3;
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[2]={-1,1};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
LL t,n,m;
LL Pow(LL a, LL b)
{
LL res=1;
while(b)
{
if(b&1)
res=(res%mod * a%mod)%mod;
a = a%mod*a%mod;
b>>=1;
}
return res%mod;
}
LL a[maxn],b[maxn];
int main()
{
scanf("%lld",&t);
while(t--)
{
ms(a,0),ms(b,0);
scanf("%lld%lld",&n,&m);
while(m--)
{
LL l,r,x;
scanf("%lld%lld%lld",&l,&r,&x);
if(x==2)
{
a[l]++,a[r+1]--; //差分标记因子含有2的数、区间加维护2or3的操作数
}
else
{
b[l]++,b[r+1]--;
}
}
LL m1=a[1],m2=b[1];
for(int i=2;i<=n;i++)
{
a[i]+=a[i-1]; //前缀和维护序列本身,而序列记录2的操作数即个数,得到具体每个数的操作数
b[i]+=b[i-1];
m1=min(m1,a[i]); //2的最小操作数
m2=min(m2,b[i]);
}
LL ans = (Pow(2,m1)%mod*Pow(3,m2)%mod)%mod;
printf("%lld\n",ans);
}
}
/*
2
5 3
1 3 2
3 5 2
1 5 3
6 3
1 2 2
5 6 2
1 6 2 6 2
【题意】 【类型】 【分析】 【时间复杂度&&优化】 【trick】 【数据】 */

2017CCPC 杭州 J. Master of GCD【差分标记/线段树/GCD】的更多相关文章

  1. CSU 2151 集训难度【多标记线段树】

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2151 Input 第一行三个数n,m,v0 表示有n名萌新和m次调整,初始时全部萌新的集训难度 ...

  2. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  3. HDU 5029 Relief grain 树链剖分打标记 线段树区间最大值

    Relief grain Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  4. hdu 5381 The sum of gcd(线段树+gcd)

    题目链接:hdu 5381 The sum of gcd 将查询离线处理,依照r排序,然后从左向右处理每一个A[i],碰到查询时处理.用线段树维护.每一个节点表示从[l,i]中以l为起始的区间gcd总 ...

  5. 2018 Arab Collegiate Programming Contest (ACPC 2018) G. Greatest Chicken Dish (线段树+GCD)

    题目链接:https://codeforces.com/gym/101991/problem/G 题意:给出 n 个数,q 次询问区间[ li,ri ]之间有多少个 GCD = di 的连续子区间. ...

  6. Luogu5327【ZJOI2019】语言【树上差分,线段树合并】

    题目大意 给定一棵$n$个节点的树,维护$n$个集合,一开始第$i$个集合只有节点$i$.有$m$个操作,每次操作输入一个$(u,v)$,表示将$(u,v)$这条链上所有点所属的集合合并.求有多少个无 ...

  7. POJ - 2777——Count Color(懒标记线段树二进制)

    Count Color Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 53639   Accepted: 16153 Des ...

  8. HDU 5875 Function (线段树+gcd / 单调栈)

    题意:给你一串数a再给你一些区间(lef,rig),求出a[lef]%a[lef+1]...%a[rig] 题解:我们可以发现数字a对数字b取模时:如果a<b,则等于原数,否则a会变小至少一半. ...

  9. CF914D Bash and a Tough Math Puzzle 线段树+gcd??奇怪而精妙

    嗯~~,好题... 用线段树维护区间gcd,按如下法则递归:(记题目中猜测的那个数为x,改动次数为tot) 1.若子区间的gcd是x的倍数,不递归: 2.若子区间的gcd是x的倍数,且没有递归到叶子结 ...

随机推荐

  1. 跨域共享cookie和跨域共享session

    转载自:http://blog.csdn.net/ahhsxy/article/details/7356128 这里所说的跨域,是指跨二级域名,而且这些域名对应的应用都在同一个app上, 比如我有以下 ...

  2. EasyUI Tree递归方式获取JSON

    最近需要用到EASYUI中的TREE功能,以前我是直接拼接成<UL><LI>发现这样拼完之后在更改树后对树的刷新不是很理想,现改用JSON格式,首先分析TREE中JOSN格式如 ...

  3. 概率dp+期望dp 题目列表(一)

    表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好 ...

  4. 解决在linux安装网易云音乐无法点击图标打开

    一下内容转载自:https://blog.csdn.net/Handoking/article/details/81026651 似乎linux下无法直接打开网易云音乐的原因是图标自带的启动脚本中没有 ...

  5. 策略模式 C#

    策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换.策略模式让算法独立于使用它的客户而独立变化. 抽象策略角色: 策略类,通常由一个接口或者抽象类实现. 具体策略角色:包装了 ...

  6. 【BZOJ】1709: [Usaco2007 Oct]Super Paintball超级弹珠

    [算法]模拟 [题解]O(n^2)预处理横线(y),纵线(x),主对角线(y-x+n),副对角线(x+y). 然后n^2枚举每个点.

  7. Spring的使用优点

    spring事物配置,声明式事务管理和基于@Transactional注解的使用 spring支持编程式事务管理和声明式事务管理两种方式. 编程式事务管理使用TransactionTemplate或者 ...

  8. HDU 1372 Knight Moves (广搜)

    题目链接 Problem Description A friend of you is doing research on the Traveling Knight Problem (TKP) whe ...

  9. 将文件内容导入到MySQL中

    1.作用 把文件系统的内容导入到数据库中 2.语法 load data infile "文件名" into table 表名 fields terminated by " ...

  10. 25、如何实现redis集群?

    由于Redis出众的性能,其在众多的移动互联网企业中得到广泛的应用.Redis在3.0版本前只支持单实例模式,虽然现在的服务器内存可以到100GB.200GB的规模,但是单实例模式限制了Redis没法 ...