numpy.ravel(a, order='C')

  Return a flattened array

numpy.chararray.flatten(order='C')

  Return a copy of the array collapsed into one dimension

numpy.squeeze(a, axis=None)

  Remove single-dimensional entries from the shape of an array.

相同点: 将多维数组 降为 一维数组

不同点:

  ravel() 返回的是视图(view),意味着改变元素的值会影响原始数组元素的值;

  flatten() 返回的是拷贝,意味着改变元素的值不会影响原始数组;

  squeeze()返回的是视图(view),仅仅是将shape中dimension为1的维度去掉;

ravel()示例:

 import matplotlib.pyplot as plt
import numpy as np def log_type(name,arr):
print("数组{}的大小:{}".format(name,arr.size))
print("数组{}的维度:{}".format(name,arr.shape))
print("数组{}的维度:{}".format(name,arr.ndim))
print("数组{}元素的数据类型:{}".format(name,arr.dtype))
#print("数组:{}".format(arr.data)) a = np.floor(10*np.random.random((3,4)))
print(a)
log_type('a',a) a1 = a.ravel()
print("a1:{}".format(a1))
log_type('a1',a1)
a1[2] = 100 print(a)
log_type('a',a)

flatten()示例

 import matplotlib.pyplot as plt
import numpy as np def log_type(name,arr):
print("数组{}的大小:{}".format(name,arr.size))
print("数组{}的维度:{}".format(name,arr.shape))
print("数组{}的维度:{}".format(name,arr.ndim))
print("数组{}元素的数据类型:{}".format(name,arr.dtype))
#print("数组:{}".format(arr.data)) a = np.floor(10*np.random.random((3,4)))
print(a)
log_type('a',a) a1 = a.flatten()
print("修改前a1:{}".format(a1))
log_type('a1',a1)
a1[2] = 100
print("修改后a1:{}".format(a1)) print("a:{}".format(a))
log_type('a',a)

squeeze()示例:

1. 没有single-dimensional entries的情况

 import matplotlib.pyplot as plt
import numpy as np def log_type(name,arr):
print("数组{}的大小:{}".format(name,arr.size))
print("数组{}的维度:{}".format(name,arr.shape))
print("数组{}的维度:{}".format(name,arr.ndim))
print("数组{}元素的数据类型:{}".format(name,arr.dtype))
#print("数组:{}".format(arr.data)) a = np.floor(10*np.random.random((3,4)))
print(a)
log_type('a',a) a1 = a.squeeze()
print("修改前a1:{}".format(a1))
log_type('a1',a1)
a1[2] = 100
print("修改后a1:{}".format(a1)) print("a:{}".format(a))
log_type('a',a)

从结果中可以看到,当没有single-dimensional entries时,squeeze()返回额数组对象是一个view,而不是copy。

2. 有single-dimentional entries 的情况

 import matplotlib.pyplot as plt
import numpy as np def log_type(name,arr):
print("数组{}的大小:{}".format(name,arr.size))
print("数组{}的维度:{}".format(name,arr.shape))
print("数组{}的维度:{}".format(name,arr.ndim))
print("数组{}元素的数据类型:{}".format(name,arr.dtype))
#print("数组:{}".format(arr.data)) a = np.floor(10*np.random.random((1,3,4)))
print(a)
log_type('a',a) a1 = a.squeeze()
print("修改前a1:{}".format(a1))
log_type('a1',a1)
a1[2] = 100
print("修改后a1:{}".format(a1)) print("a:{}".format(a))
log_type('a',a)

numpy.ravel()/numpy.flatten()/numpy.squeeze()的更多相关文章

  1. 学习笔记27—python中numpy.ravel() 和 flatten()函数

    简介 首先声明两者所要实现的功能是一致的(将多维数组降位一维).这点从两个单词的意也可以看出来,ravel(散开,解开),flatten(变平).两者的区别在于返回拷贝(copy)还是返回视图(vie ...

  2. numpy.ravel() vs numpy.flatten()

    首先声明两者所要实现的功能是一致的(将多维数组降为一维),两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten()返回一份拷贝,对拷贝所做的修改不会影响(reflec ...

  3. numpy的ravel()和flatten()函数

    相同点: 两者所要实现的功能是一致的(将多维数组降位一维).这点从两个单词的意也可以看出来,ravel(散开,解开),flatten(变平). In [14]: x=np.array([[1,2],[ ...

  4. Python的 numpy中 numpy.ravel() 和numpy.flatten()的区别和使用

    两者所要实现的功能是一致的(将多维数组降为一维), 两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten() 返回一份拷贝,对拷贝所做的修改不会影响(reflects ...

  5. numpy.ravel() 与 numpy.flatten()

    两者都可实现将多维数组降位一维的功能 numpy.flatten()返回拷贝,对拷贝所做的修改不会影响原始矩阵 numpy.ravel()返回视图,会影响原始矩阵 1)ravel() In [16]: ...

  6. Numpy中的flatten是按照什么方式进行工作。

    a = [[[1,2],[3,4]],[[5,6],[7,8]]] a = np.ndarray(a) array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) type ...

  7. 【numpy】新版本中numpy(numpy>1.17.0)中的random模块

    numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法. 首先查看numpy的版本: import nu ...

  8. Numpy中扁平化函数ravel()和flatten()的区别

    在Numpy中经常使用到的操作由扁平化操作,Numpy提供了两个函数进行此操作,他们的功能相同,但在内存上有很大的不同. 先来看这两个函数的使用: from numpy import * a = ar ...

  9. numpy下的flatten()函数用法

    flatten是numpy.ndarray.flatten的一个函数,其官方文档是这样描述的: ndarray.flatten(order='C') Return a copy of the arra ...

随机推荐

  1. 五、Springboot 之 自定义配置文件及读取配置文件

    说明:建议所有的类应该与spring-boot启动程序同级,不如扫描不到 1.核心配置文件是指在resources根目录下的application.properties或application.yml ...

  2. [GLSL]着色器周记02——火焰特效 【转】

    http://www.cnblogs.com/tkgamegroup/p/4214081.html 这周学了好多.包括伪随机数.柏林噪声.先说伪随机数.伪随机数我们用的是周期函数而不是那种由前一项乘一 ...

  3. 在Linux命令行下查询当前所使用的shell版本与种类的方法

    原文: https://www.jb51.net/LINUXjishu/407463.html ---------------------------------------------------- ...

  4. PHP基础知识(二)

    Global namespace  //看不懂看下面的中文 中英结合看看 When using namespaces, you may find that internal functions(内部( ...

  5. Tomcat启动报错:java.net.BindException: Cannot assign requested address: JVM_Bind

    Tomcat启动报错:java.net.BindException: Cannot assign requested address: JVM_Bind Tomcat Cannot assign re ...

  6. ASCII、Unicode、UTF8编码类型的理解

    一.ASCII码        在计算机内部,所有的信息最终都表示为一个二进制的字符串.每一个二进制位(bit)有0和1两种状态,因此八个二进制位就可以组合出256种状态,这被称为一个字节(byte) ...

  7. javascript闭包传参就这么简单

    var query = (function (a) { return a; })('fx'); alert(query);

  8. 演示程序之打游戏 -- 慕司板IAP15

    上位机和协议制定我的大学舍友(他的微博:http://weibo.com/lesshst? topnav=1&wvr=5&topsug=1)毕业前百忙之中使用Python花了一个下午完 ...

  9. MAC OS X Yosemite的PyQt4配置记录

    MAC OS X Yosemite的PyQt4配置记录 声明: 1)本报告由博客园bitpeach撰写,版权所有,免费转载,请注明出处,并请勿作商业用途. 2)若本文档内有侵权文字或图片等内容,请联系 ...

  10. 机器学习系列(8)_读《Nature》论文,看AlphaGo养成

    作者:viewmode=contents">龙心尘 && viewmode=contents">寒小阳 时间:2016年3月. 出处:http://bl ...