YoLo 实践(1)

by lizhen

参考代码:

keras-yolo3 ***

yolo_tensorflow

所需环境:

python3 | annconda

keras

tensorflow

configparser

目标:

使用Keras| tensorflow完成基于Yolo的车辆检测的训练;

实施方法:

(1). Yolo是目前使用比较广泛的模型之一, 在github等开源网站中有很多实现方式, 自己找一个比较靠谱的程序,对其改进. 改进方式有以下几点: (a) 训练给予VOC的模型(复现Yolov3) ; (b) 根据论文去阅读yolo

(2). 改进训练方法, 适用雨车辆检测

Step 0. 测试项目是否可以正常运行

wget https://pjreddie.com/media/files/yolov3.weights # 下载yolo的模型

python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5 # 将yolo的模型转化成适合Kears加载的格式

python yolo_video.py --image # 指定使用图片检测

运行效果图

使用VOC数据结构训练模型

Step1: 生成统一格式的标注文件和类别文件

为了方便训练, 针对每一个图片都有一种格式的标注文件:

这两种格式的文件是:

Row format: image_file_path box1 box2 ... boxN
Box 的格式 : x_min,y_min,x_max,y_max,class_id

对于VOC数据集,由于已经有了xml格式的标注文件, 仅需要转换标注的格式即可, 在此提供voc_annotation.py

vim voc_annotation.py # 修改有关VOC2007数据的路径
python voc_annotation.py # 运行有关

通过阅读voc_annotation.py文件, 可以得知:

该脚本可以将VOC2007 中标注修改成上述格式的文本;

转换的过程需要修改VOC数据集的路径;

转换后,会待当前目录(getcwd())创建有关训练和校验的标注文件:


~/workspace/keras-yolo3$ ll
-rw-rw-r-- 1 lizhen lizhen 297885 Oct 23 15:48 2007_train.txt # 产生的新文件
-rw-rw-r-- 1 lizhen lizhen 298595 Oct 23 15:48 2007_val.txt

文件的格式如下:

/keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000064.jpg 1,23,451,500,2
keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000066.jpg 209,187,228,230,14 242,182,274,259,14 269,188,2
95,259,14
keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000073.jpg 121,143,375,460,15 2,154,64,459,15 270,155,375,
331,3 22,143,146,500,14

Step2: 加载预训练模型

为了加快训练的速度和Auc, 可以在已有的模型上进行训练,

在后期的训练中,会冻结yolo模型的前249层, 主要训练后面的高维度的特征

Freeze the first 249 layers of total 252 layers.

cd /home/lizhen/workspace/keras-yolo3 # 切换到工作目录
python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5 # 将适用于darknet的模型转换成Keras ....
__________________________________________________________________________________________________
conv2d_67 (Conv2D) (None, None, None, 2 130815 leaky_re_lu_65[0][0]
__________________________________________________________________________________________________
conv2d_75 (Conv2D) (None, None, None, 2 65535 leaky_re_lu_72[0][0]
==================================================================================================
Total params: 62,001,757
Trainable params: 61,949,149
Non-trainable params: 52,608
__________________________________________________________________________________________________
None
Saved Keras model to model_data/yolo.h5
Read 62001757 of 62001757.0 from Darknet weights.

Step3: 训练VOC数据

为了防止在训练过程中出现OOM异常, 根据问题1的提示, 可以将epoch和batch的数量降低;

对 train.py 的读取文件位置进行修改, 替换成上Step1中生成207_train.txt

python train.py # 读取2017_train.txt ,同时运行模型

~/workspace/keras-yolo3$ ls logs/001/
ep003-loss38.801-val_loss35.522.h5 ep009-loss26.373-val_loss27.126.h5 events.out.tfevents.1540299060.BoHong
ep003-loss39.940-val_loss36.366.h5 events.out.tfevents.1540294790.BoHong trained_weights_final.h5
ep006-loss29.750-val_loss28.700.h5 events.out.tfevents.1540296584.BoHong trained_weights_stage_1.h5

通过阅读train.py 可知, 经过训练以后会在./logs/0001下产生模型, 模型是** trained_weights_final.h5**

训练过程中的loss变化如下:

Step4: 测试模型

python yolo_video.py --model logs/0001/trained_weights_final.h5 --image

测试效果:

问题集合

1. Out of system memory when unfreeze all of the layers.

在训练数据的过程中(python train.py), 会因为GPU的OOM异常而提前退出训练;

根据

https://github.com/qqwweee/keras-yolo3/issues/122

中提供的信息, 可以尝试一下集中方案:

1 only train 2 classes, car and person, modify model_data/voc_classes.txt

2 batch_size = 2 & epoch = 20

3 set load_pretrained=False

4 update tensorflow to 1.8.0

附录A

ConfigParser

ConfigParser模块在python3中修改为configparser.这个模块定义了一个ConfigParser类,该类的作用是使用配置文件生效,配置文件的格式和windows的INI文件的格式相同

该模块的作用 就是使用模块中的RawConfigParser()、ConfigParser()、 SafeConfigParser()这三个方法,创建一个对象使用对象的方法对指定的配置文件做增删改查 操作。



后期准备解析yolo论文,改代码 敬请期待~

YoLo 实践(1)的更多相关文章

  1. YOLO实践初探

    学习了Andrew Ng 深度学习第三周卷积神经网络课程后,接着看了看YOLO论文,论文看得懵懵懂懂,沉不下心精雕细琢,手痒痒,迫不及待地想试一试YOLO效果.于是乎,在github上下载了ping星 ...

  2. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

  3. 『计算机视觉』YOLO系列总结

    网络细节资料很多,不做赘述,主要总结演化思路和解决问题. 一.YOLO 1.网络简介 YOLO网络结构由24个卷积层与2个全连接层构成,网络入口为448x448(v2为416x416),图片进入网络先 ...

  4. 目标检测:YOLO(v1 to v3)——学习笔记

    前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后 ...

  5. yolov3实践(一)

    很多博友看了我的第一篇博客yolo类检测算法解析——yolo v3,对其有了一定的认识和了解,但是并没有贴出代码和运行效果,略显苍白.因此在把篇博客理论的基础上,造就了第一篇实践文章,也就是本文.只要 ...

  6. [深度学习] 使用Darknet YOLO 模型破解中文验证码点击识别

    内容 背景 准备 实践 结果 总结 引用 背景 老规矩,先上代码吧 代码所在: https://github.com/BruceDone/darknet_demo 最近在做深度学习相关的项目的时候,了 ...

  7. 2018软工实践—Alpha冲刺(8)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 多次测试软件运行 学习OPENMP ...

  8. 2018软工实践—Alpha冲刺(6)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 测试服务器并行能力 学习MSI.CUDA ...

  9. 2018软工实践—Alpha冲刺(4)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助前后端接口的开发 测试项目运行的服务器环 ...

随机推荐

  1. vue源码-检查对象是否全相等

    /** * Check if two values are loosely equal - that is, * if they are plain objects, do they have the ...

  2. 剑指offer——面试题23:链表中环的入口节点

    函数: ListNode* MeetingNode(ListNode* pHead) { if(pHead==nullptr) return nullptr; ListNode* quickNode= ...

  3. vue中npm run dev 不能自动打开浏览器运行项目

    最近用vue2.0 + webpack搭建了环境创建新的项目.出现一个很蹩脚的问题: 在终端输入 npm run dev 的时候,不能自动打开浏览器运行项目. 这段话的意思是:你的应用程序运行地址是: ...

  4. 封装通用的xhr对象(兼容各个版本)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. 如何统计Visual Studio Code项目的代码行数

    背景 年底到了,公司一年一度做述职报告的时间又到了,每到此时小伙伴们都想方设法的去做一些代码层面的汇总.在此交给大家个小妙招,走过路过不要错过哈,, 解决方案 使用Visual Studio Code ...

  6. C++标准库类模板(stack)和 队列(queue)

    在C++标准库(STL)中有栈和队列的类模板,因此可以直接使用 1.栈(stack):使用栈之前,要先包含头文件 : #include<stack> stack.push(elem); / ...

  7. 关于halo博客系统的使用踩坑——忘记登录密码

    踩坑: halo系统可以直接通过运行jar -jar halo-0.0.3.jar跑起来,也可以通过导入IDE然后运行Application的main方法跑起系统. h2数据库访问路径:http:// ...

  8. vue中$nextTick的用法

    简介 vue是非常流行的框架,他结合了angular和react的优点,从而形成了一个轻量级的易上手的具有双向数据绑定特性的mvvm框架.本人比较喜欢用之.在我们用vue时,我们经常用到一个方法是th ...

  9. JavaScript跨浏览器处理事件以及相关对象

    主流的浏览器和IE浏览器在处理事件和事件对象上是有所区别的,我们一般会通过EventUtil进行封装,这样,就可以正常的跨浏览器处理事件了,本文的主要内容总结自<JavaScript高级程序设计 ...

  10. 如何自定义修改ztree树节点的图标

    1.此种情况是针对后对数据没有不好判断谁是父节点和子节点的问题 ztree默认的树节点,父子节点的图标不大好看,修改图片只需要在数据的地方添加icon的键,值就是图片的相对位置,但是问题就是需要区分是 ...