YoLo 实践(1)

by lizhen

参考代码:

keras-yolo3 ***

yolo_tensorflow

所需环境:

python3 | annconda

keras

tensorflow

configparser

目标:

使用Keras| tensorflow完成基于Yolo的车辆检测的训练;

实施方法:

(1). Yolo是目前使用比较广泛的模型之一, 在github等开源网站中有很多实现方式, 自己找一个比较靠谱的程序,对其改进. 改进方式有以下几点: (a) 训练给予VOC的模型(复现Yolov3) ; (b) 根据论文去阅读yolo

(2). 改进训练方法, 适用雨车辆检测

Step 0. 测试项目是否可以正常运行

wget https://pjreddie.com/media/files/yolov3.weights # 下载yolo的模型

python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5 # 将yolo的模型转化成适合Kears加载的格式

python yolo_video.py --image # 指定使用图片检测

运行效果图

使用VOC数据结构训练模型

Step1: 生成统一格式的标注文件和类别文件

为了方便训练, 针对每一个图片都有一种格式的标注文件:

这两种格式的文件是:

Row format: image_file_path box1 box2 ... boxN
Box 的格式 : x_min,y_min,x_max,y_max,class_id

对于VOC数据集,由于已经有了xml格式的标注文件, 仅需要转换标注的格式即可, 在此提供voc_annotation.py

vim voc_annotation.py # 修改有关VOC2007数据的路径
python voc_annotation.py # 运行有关

通过阅读voc_annotation.py文件, 可以得知:

该脚本可以将VOC2007 中标注修改成上述格式的文本;

转换的过程需要修改VOC数据集的路径;

转换后,会待当前目录(getcwd())创建有关训练和校验的标注文件:


~/workspace/keras-yolo3$ ll
-rw-rw-r-- 1 lizhen lizhen 297885 Oct 23 15:48 2007_train.txt # 产生的新文件
-rw-rw-r-- 1 lizhen lizhen 298595 Oct 23 15:48 2007_val.txt

文件的格式如下:

/keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000064.jpg 1,23,451,500,2
keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000066.jpg 209,187,228,230,14 242,182,274,259,14 269,188,2
95,259,14
keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000073.jpg 121,143,375,460,15 2,154,64,459,15 270,155,375,
331,3 22,143,146,500,14

Step2: 加载预训练模型

为了加快训练的速度和Auc, 可以在已有的模型上进行训练,

在后期的训练中,会冻结yolo模型的前249层, 主要训练后面的高维度的特征

Freeze the first 249 layers of total 252 layers.

cd /home/lizhen/workspace/keras-yolo3 # 切换到工作目录
python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5 # 将适用于darknet的模型转换成Keras ....
__________________________________________________________________________________________________
conv2d_67 (Conv2D) (None, None, None, 2 130815 leaky_re_lu_65[0][0]
__________________________________________________________________________________________________
conv2d_75 (Conv2D) (None, None, None, 2 65535 leaky_re_lu_72[0][0]
==================================================================================================
Total params: 62,001,757
Trainable params: 61,949,149
Non-trainable params: 52,608
__________________________________________________________________________________________________
None
Saved Keras model to model_data/yolo.h5
Read 62001757 of 62001757.0 from Darknet weights.

Step3: 训练VOC数据

为了防止在训练过程中出现OOM异常, 根据问题1的提示, 可以将epoch和batch的数量降低;

对 train.py 的读取文件位置进行修改, 替换成上Step1中生成207_train.txt

python train.py # 读取2017_train.txt ,同时运行模型

~/workspace/keras-yolo3$ ls logs/001/
ep003-loss38.801-val_loss35.522.h5 ep009-loss26.373-val_loss27.126.h5 events.out.tfevents.1540299060.BoHong
ep003-loss39.940-val_loss36.366.h5 events.out.tfevents.1540294790.BoHong trained_weights_final.h5
ep006-loss29.750-val_loss28.700.h5 events.out.tfevents.1540296584.BoHong trained_weights_stage_1.h5

通过阅读train.py 可知, 经过训练以后会在./logs/0001下产生模型, 模型是** trained_weights_final.h5**

训练过程中的loss变化如下:

Step4: 测试模型

python yolo_video.py --model logs/0001/trained_weights_final.h5 --image

测试效果:

问题集合

1. Out of system memory when unfreeze all of the layers.

在训练数据的过程中(python train.py), 会因为GPU的OOM异常而提前退出训练;

根据

https://github.com/qqwweee/keras-yolo3/issues/122

中提供的信息, 可以尝试一下集中方案:

1 only train 2 classes, car and person, modify model_data/voc_classes.txt

2 batch_size = 2 & epoch = 20

3 set load_pretrained=False

4 update tensorflow to 1.8.0

附录A

ConfigParser

ConfigParser模块在python3中修改为configparser.这个模块定义了一个ConfigParser类,该类的作用是使用配置文件生效,配置文件的格式和windows的INI文件的格式相同

该模块的作用 就是使用模块中的RawConfigParser()、ConfigParser()、 SafeConfigParser()这三个方法,创建一个对象使用对象的方法对指定的配置文件做增删改查 操作。



后期准备解析yolo论文,改代码 敬请期待~

YoLo 实践(1)的更多相关文章

  1. YOLO实践初探

    学习了Andrew Ng 深度学习第三周卷积神经网络课程后,接着看了看YOLO论文,论文看得懵懵懂懂,沉不下心精雕细琢,手痒痒,迫不及待地想试一试YOLO效果.于是乎,在github上下载了ping星 ...

  2. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

  3. 『计算机视觉』YOLO系列总结

    网络细节资料很多,不做赘述,主要总结演化思路和解决问题. 一.YOLO 1.网络简介 YOLO网络结构由24个卷积层与2个全连接层构成,网络入口为448x448(v2为416x416),图片进入网络先 ...

  4. 目标检测:YOLO(v1 to v3)——学习笔记

    前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后 ...

  5. yolov3实践(一)

    很多博友看了我的第一篇博客yolo类检测算法解析——yolo v3,对其有了一定的认识和了解,但是并没有贴出代码和运行效果,略显苍白.因此在把篇博客理论的基础上,造就了第一篇实践文章,也就是本文.只要 ...

  6. [深度学习] 使用Darknet YOLO 模型破解中文验证码点击识别

    内容 背景 准备 实践 结果 总结 引用 背景 老规矩,先上代码吧 代码所在: https://github.com/BruceDone/darknet_demo 最近在做深度学习相关的项目的时候,了 ...

  7. 2018软工实践—Alpha冲刺(8)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 多次测试软件运行 学习OPENMP ...

  8. 2018软工实践—Alpha冲刺(6)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 测试服务器并行能力 学习MSI.CUDA ...

  9. 2018软工实践—Alpha冲刺(4)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助前后端接口的开发 测试项目运行的服务器环 ...

随机推荐

  1. Q806 写字符串需要的行数

    我们要把给定的字符串 S 从左到右写到每一行上,每一行的最大宽度为100个单位,如果我们在写某个字母的时候会使这行超过了100 个单位,那么我们应该把这个字母写到下一行.我们给定了一个数组 width ...

  2. AXI协议(一)

    最近弄Zynq,不懂AXI协议Zynq很难玩儿的转.这些笔记主要攻克AXI中的一些难题. 所有的AXI4包含了5个不同的通道:     (1)读/写地址通道(Read/Write address ch ...

  3. SMB共享

    [root@samba1 ~]# yum install samba samba-client  samba-common -y 因为只有真实存在的用户才能在samba中建立,所以我们新建两个测试用户 ...

  4. Oracle触发器简单使用记录

    在ORACLE系统里,触发器类似函数和过程.1.触发器类型:(一般为:语句级触发器和行级触发器.) 1).DML触发器: 创建在表上,由DML事件引发 2).instead of触发器: 创建在视图上 ...

  5. FileZilla上傳報錯:421 There are too many connections from your internet address

    起因:2019年01月27日晚九點左右,想要將一個50MB+的文件夾上傳到阿里雲的虛擬主機上,使用FTP 工具FileZilla,出現了上傳一段時間後提示421 There are too many ...

  6. 解决bootstrap中显示不了本地字体图标

    正在用bootstrap写一个登录界面时,准备用一个图标 但实际效果是: 可以看到图标并没有显示出来,百度一下,发现有可能是路径问题. 自己的目录关系和引用方式如下分别为: Ctrl+左键进入glyp ...

  7. Ionic3,组件的使用(四)

    说明 因为同样是作为 Ionic3 小白,所以很多东西都是自己摸索出来的,可能有很多不合理的地方,请多多指正. 效果图 细节说明 一:组件.页面均采用 懒加载: 二:页面的头部标题栏,采用了组件化的方 ...

  8. SpringCloud---客户端负载均衡---Spring Cloud Ribbon

    1.概述 1.1 Spring Cloud Ribbon是一个基于HTTP和TCP的客户端负载均衡工具: 基于Netflix Ribbon实现: 通过Spring Cloud的封装,可以轻松将面向服务 ...

  9. Netstat 的 10 个基本用法

    Netstat 简介 Netstat 是一款命令行工具,可用于列出系统上所有的网络套接字连接情况,包括 tcp, udp 以及 unix 套接字,另外它还能列出处于监听状态(即等待接入请求)的套接字. ...

  10. selenium中等待元素的加载

    在实际使用中,有时会出现一个元素还没有加载出来,导致无法获取,此时需要selenium处理来等待一段时间,此时处理方法有以下几种: 1.最笨.最简单但是最不推荐的方式: Thread.sleep(ti ...