YoLo 实践(1)
YoLo 实践(1)
by lizhen
参考代码:
keras-yolo3 ***
所需环境:
python3 | annconda
keras
tensorflow
configparser
目标:
使用Keras| tensorflow完成基于Yolo的车辆检测的训练;
实施方法:
(1). Yolo是目前使用比较广泛的模型之一, 在github等开源网站中有很多实现方式, 自己找一个比较靠谱的程序,对其改进. 改进方式有以下几点: (a) 训练给予VOC的模型(复现Yolov3) ; (b) 根据论文去阅读yolo
(2). 改进训练方法, 适用雨车辆检测
Step 0. 测试项目是否可以正常运行
wget https://pjreddie.com/media/files/yolov3.weights # 下载yolo的模型
python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5 # 将yolo的模型转化成适合Kears加载的格式
python yolo_video.py --image # 指定使用图片检测
运行效果图


使用VOC数据结构训练模型
Step1: 生成统一格式的标注文件和类别文件
为了方便训练, 针对每一个图片都有一种格式的标注文件:
这两种格式的文件是:
Row format: image_file_path box1 box2 ... boxN
Box 的格式 : x_min,y_min,x_max,y_max,class_id
对于VOC数据集,由于已经有了xml格式的标注文件, 仅需要转换标注的格式即可, 在此提供voc_annotation.py
vim voc_annotation.py # 修改有关VOC2007数据的路径
python voc_annotation.py # 运行有关
通过阅读voc_annotation.py文件, 可以得知:
该脚本可以将VOC2007 中标注修改成上述格式的文本;
转换的过程需要修改VOC数据集的路径;
转换后,会待当前目录(getcwd())创建有关训练和校验的标注文件:
~/workspace/keras-yolo3$ ll
-rw-rw-r-- 1 lizhen lizhen 297885 Oct 23 15:48 2007_train.txt # 产生的新文件
-rw-rw-r-- 1 lizhen lizhen 298595 Oct 23 15:48 2007_val.txt
文件的格式如下:
/keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000064.jpg 1,23,451,500,2
keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000066.jpg 209,187,228,230,14 242,182,274,259,14 269,188,2
95,259,14
keras-yolo3/VOCdevkit/VOC2007/JPEGImages/000073.jpg 121,143,375,460,15 2,154,64,459,15 270,155,375,
331,3 22,143,146,500,14
Step2: 加载预训练模型
为了加快训练的速度和Auc, 可以在已有的模型上进行训练,
在后期的训练中,会冻结yolo模型的前249层, 主要训练后面的高维度的特征
Freeze the first 249 layers of total 252 layers.
cd /home/lizhen/workspace/keras-yolo3 # 切换到工作目录
python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5 # 将适用于darknet的模型转换成Keras
....
__________________________________________________________________________________________________
conv2d_67 (Conv2D) (None, None, None, 2 130815 leaky_re_lu_65[0][0]
__________________________________________________________________________________________________
conv2d_75 (Conv2D) (None, None, None, 2 65535 leaky_re_lu_72[0][0]
==================================================================================================
Total params: 62,001,757
Trainable params: 61,949,149
Non-trainable params: 52,608
__________________________________________________________________________________________________
None
Saved Keras model to model_data/yolo.h5
Read 62001757 of 62001757.0 from Darknet weights.
Step3: 训练VOC数据
为了防止在训练过程中出现OOM异常, 根据问题1的提示, 可以将epoch和batch的数量降低;
对 train.py 的读取文件位置进行修改, 替换成上Step1中生成207_train.txt
python train.py # 读取2017_train.txt ,同时运行模型
~/workspace/keras-yolo3$ ls logs/001/
ep003-loss38.801-val_loss35.522.h5 ep009-loss26.373-val_loss27.126.h5 events.out.tfevents.1540299060.BoHong
ep003-loss39.940-val_loss36.366.h5 events.out.tfevents.1540294790.BoHong trained_weights_final.h5
ep006-loss29.750-val_loss28.700.h5 events.out.tfevents.1540296584.BoHong trained_weights_stage_1.h5
通过阅读train.py 可知, 经过训练以后会在./logs/0001下产生模型, 模型是** trained_weights_final.h5**
训练过程中的loss变化如下:

Step4: 测试模型
python yolo_video.py --model logs/0001/trained_weights_final.h5 --image
测试效果:


问题集合
1. Out of system memory when unfreeze all of the layers.
在训练数据的过程中(python train.py), 会因为GPU的OOM异常而提前退出训练;
根据
https://github.com/qqwweee/keras-yolo3/issues/122
中提供的信息, 可以尝试一下集中方案:
1 only train 2 classes, car and person, modify model_data/voc_classes.txt
2 batch_size = 2 & epoch = 20
3 set load_pretrained=False
4 update tensorflow to 1.8.0
附录A
ConfigParser
ConfigParser模块在python3中修改为configparser.这个模块定义了一个ConfigParser类,该类的作用是使用配置文件生效,配置文件的格式和windows的INI文件的格式相同
该模块的作用 就是使用模块中的RawConfigParser()、ConfigParser()、 SafeConfigParser()这三个方法,创建一个对象使用对象的方法对指定的配置文件做增删改查 操作。

后期准备解析yolo论文,改代码 敬请期待~
YoLo 实践(1)的更多相关文章
- YOLO实践初探
学习了Andrew Ng 深度学习第三周卷积神经网络课程后,接着看了看YOLO论文,论文看得懵懵懂懂,沉不下心精雕细琢,手痒痒,迫不及待地想试一试YOLO效果.于是乎,在github上下载了ping星 ...
- 目标检测算法YOLO算法介绍
YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...
- 『计算机视觉』YOLO系列总结
网络细节资料很多,不做赘述,主要总结演化思路和解决问题. 一.YOLO 1.网络简介 YOLO网络结构由24个卷积层与2个全连接层构成,网络入口为448x448(v2为416x416),图片进入网络先 ...
- 目标检测:YOLO(v1 to v3)——学习笔记
前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后 ...
- yolov3实践(一)
很多博友看了我的第一篇博客yolo类检测算法解析——yolo v3,对其有了一定的认识和了解,但是并没有贴出代码和运行效果,略显苍白.因此在把篇博客理论的基础上,造就了第一篇实践文章,也就是本文.只要 ...
- [深度学习] 使用Darknet YOLO 模型破解中文验证码点击识别
内容 背景 准备 实践 结果 总结 引用 背景 老规矩,先上代码吧 代码所在: https://github.com/BruceDone/darknet_demo 最近在做深度学习相关的项目的时候,了 ...
- 2018软工实践—Alpha冲刺(8)
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 多次测试软件运行 学习OPENMP ...
- 2018软工实践—Alpha冲刺(6)
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 测试服务器并行能力 学习MSI.CUDA ...
- 2018软工实践—Alpha冲刺(4)
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助前后端接口的开发 测试项目运行的服务器环 ...
随机推荐
- JavaWeb后台从input表单获取文本值的两种方式
JavaWeb后台从input表单获取文本值的两种方式 #### index.html <!DOCTYPE html> <html lang="en"> & ...
- rest-assured之验证响应数据(Verifying Response Data)
前面的文章中已经介绍过了如果获得响应数据,接下来我们来介绍一下应该如何来验证这些获得的响应数据,比如验证状态码.状态行.cookies.header.content-type以及body体. 1.验证 ...
- pymysql 各种坑总结
pymysql各种坑只针对自己的项目1.关于关闭连接,报错为:pymysql.err.InterfaceError: (0, '') 这个错误原因:对已经关闭的链接再次进行操作,参考MySQL.err ...
- 'node' 不是内部或外部命令,也不是可运行的程序或批处理文件
状况:安装完nodejs之后,命令行输入node -v, 提示 'node' 不是内部或外部命令,也不是可运行的程序或批处理文件原因:检查环境变量没有配置正确配置环境变量: windows系统里, 需 ...
- Dubbo---初识
1.概述 1.1 Dubbo是一款高性能.轻量级的java RPC框架: 1.2 Dubbo提供的功能: 面向接口的远程调用: 智能容错.负载均衡: 服务注册.发现: 1.3 Dubbo架构 Prov ...
- python+Selenium之操作滚动条
当我们做测试的时候,如果页面过长,就会定位元素失败,这时可以使用move_to_element方法跳到该元素的位置再操作: from selenium.webdriver.common.action_ ...
- oracle--dump & V$BH
一,什么是BH BH即Buffer Header,每一个数据块在被读入buffer cache时,都会先在buffer cache中构造一个buffer header,buffer header与数据 ...
- centos 7编译安装php7
0.下载php源代码 http://www.php.net/releases/ 1.配置编译环境 yum install -y gcc gcc++ libxml2-devel openssl open ...
- 案例17-validate自定义校验规则校验验证码是否输入正确
1 自定义校验规则代码 <script type="text/javascript"> //使用validate插件进行表单的校验 $(function(){ $(&q ...
- RequireJs学习笔记之Define a Module
简单的键值对定义define({ color: "black", size: "unisize"}); 如果一个模块没有任何依赖,又需要做用一个函数 ...