前序遍历:
1.访问根节点
2.前序遍历左子树
3.前序遍历右子树


中序遍历:
1.中序遍历左子树
2.访问根节点
3.中序遍历右子树


后序遍历:
1.后序遍历左子树
2.后序遍历右子树
3.访问根节点
---------------------

package design;

import java.util.ArrayDeque;
import java.util.Queue;
import java.util.Stack; public class BinTree {
char data;
BinTree leftChild;
BinTree rightChild;
public BinTree(char c) {
data = c;
}
public static void preSearch(BinTree root){
if(root !=null){
System.out.print(root.data);
preSearch(root.leftChild);
preSearch(root.rightChild);
}
}
public static void midSearch(BinTree root){
if(root !=null){
midSearch(root.leftChild);
System.out.print(root.data);
midSearch(root.rightChild);
}else{
return;
}
}
public static void postSearch(BinTree root){
if(root !=null){
postSearch(root.leftChild);
postSearch(root.rightChild);
System.out.print(root.data);
}
}
// 先序遍历非递归
public static void preOrder(BinTree root){
Stack<BinTree> s = new Stack<BinTree>();
while(root !=null || !s.empty()){
while(root!=null){
System.out.print(root.data);
s.push(root);
root = root.leftChild;
}
if(!s.empty()){
root = s.pop();
root = root.rightChild;
}
}
}
// 中序遍历非递归
public static void midOrder(BinTree root){
Stack<BinTree> s = new Stack<BinTree>();
while(root!=null || !s.empty()){
while(root!=null){
s.push(root);
root = root.leftChild;
}
if(!s.empty()){
root =s.pop();
System.out.print(root.data);
root = root.rightChild;
}
}
}
// 后序遍历非递归
public static void postOrder(BinTree root){
Stack<BinTree> s = new Stack<BinTree>();
Stack<Integer> s2 = new Stack<Integer>();
Integer i = new Integer();
while(root!=null || !s.empty()){
while(root!=null){
s.push(root);
s2.push(new Integer());
root = root.leftChild;
}
while(!s.empty() && s2.peek().equals(i)){
s2.pop();
System.out.print(s.pop().data);
}
if(!s.empty()){
s2.pop();
s2.push(new Integer());
root =s.peek();
root = root.rightChild;
}
}
}
//计算二叉树的深度
public static int level(BinTree root){
if(root == null){
return ;
}
return level(root.leftChild)+>level(root.rightChild)+?level(root.leftChild)+:level(root.rightChild)+; }
//层序遍历二叉树
public static void levelTrav(BinTree root) {
if (root == null)
return;
Queue<BinTree> q = new ArrayDeque<BinTree>();
q.add(root);
BinTree cur;
while (!q.isEmpty()) {
cur = q.peek();
System.out.print(cur.data + " ");
if (cur.leftChild != null)
q.add(cur.leftChild);
if (cur.rightChild != null)
q.add(cur.rightChild);
q.poll();
}
}
public static void main(String[] args) {
BinTree b1 = new BinTree('a');
BinTree b2 = new BinTree('b');
BinTree b3 = new BinTree('c');
BinTree b4 = new BinTree('d');
BinTree b5 = new BinTree('e'); /**
* a
* / \
* b c
* / \
* d e
*/
b1.leftChild = b2;
b1.rightChild = b3;
b2.leftChild = b4;
b2.rightChild = b5; BinTree.preSearch(b1);
System.out.println();
BinTree.preOrder(b1);
System.out.println("========================");
BinTree.midSearch(b1);
System.out.println("");
BinTree.midOrder(b1);
System.out.println("========================");
BinTree.postSearch(b1);
System.out.println();
BinTree.postOrder(b1);
System.out.println("========================");
System.out.println(BinTree.level(b1));
System.out.println("========================");
BinTree.levelTrav(b1);
}
}

JAVA递归、非递归遍历二叉树的更多相关文章

  1. java创建二叉树并实现非递归中序遍历二叉树

    java创建二叉树并递归遍历二叉树前面已有讲解:http://www.cnblogs.com/lixiaolun/p/4658659.html. 在此基础上添加了非递归中序遍历二叉树: 二叉树类的代码 ...

  2. 二叉树的先序、中序以及后序遍历(递归 && 非递归)

    树节点定义: class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } 递归建立二 ...

  3. 【数据结构】——搜索二叉树的插入,查找和删除(递归&非递归)

    一.搜索二叉树的插入,查找,删除 简单说说搜索二叉树概念: 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右 ...

  4. 最近公共祖先 LCA 递归非递归

    给定一棵二叉树,找到两个节点的最近公共父节点(LCA).最近公共祖先是两个节点的公共的祖先节点且具有最大深度.假设给出的两个节点都在树中存在. dfs递归写法 查找两个node的最近公共祖先,分三种情 ...

  5. Reverse Linked List 递归非递归实现

    单链表反转--递归非递归实现 Java接口: ListNode reverseList(ListNode head) 非递归的实现 有2种,参考 头结点插入法 就地反转 递归的实现 1) Divide ...

  6. Java实现二叉树的创建、递归/非递归遍历

    近期复习数据结构中的二叉树的相关问题,在这里整理一下 这里包含: 1.二叉树的先序创建 2.二叉树的递归先序遍历 3.二叉树的非递归先序遍历 4.二叉树的递归中序遍历 5.二叉树的非递归中序遍历 6. ...

  7. 二叉树的递归,非递归遍历(java)

    import java.util.Stack; import java.util.HashMap; public class BinTree { private char date; private ...

  8. 二叉树——遍历篇(递归/非递归,C++)

    二叉树--遍历篇 二叉树很多算法题都与其遍历相关,笔者经过大量学习.思考,整理总结写下二叉树的遍历篇,涵盖递归和非递归实现. 1.二叉树数据结构及访问函数 #include <stdio.h&g ...

  9. 树的广度优先遍历和深度优先遍历(递归非递归、Java实现)

    在编程生活中,我们总会遇见树性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程.现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的) 1.广度优先遍历 英文缩写为BFS即B ...

  10. 二叉树的递归,非递归遍历(C++)

    二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易 ...

随机推荐

  1. 复杂分布式架构下的计算治理之路:计算中间件 Linkis

    前言 在当前的复杂分布式架构环境下,服务治理已经大行其道.但目光往下一层,从上层 APP.Service,到底层计算引擎这一层面,却还是各个引擎各自为政,Client-Server 模式紧耦合满天飞的 ...

  2. 干货|Kubernetes集群部署
Nginx-ingress Controller

    Kubernetes提供了两种内建的云端负载均衡机制用于发布公共应用,一种是工作于传输层的Service资源,它实现的是TCP负载均衡器:另一种是Ingress资源,它实现的是HTTP(S)负载均衡器 ...

  3. 3)在View中添加LBUTTONDOWN(标准消息)

    1)消息一共分为四类: (1)标准消息-->以WM_  开头的都是标准消息 (2)命令消息---->  菜单  工具条  快捷键(两个按键的组合是快捷键,一个按键是 WM_KEYDOWN( ...

  4. PIL对象和numpy三维数组的互相转换

    #https://stackoverflow.com/questions/384759/how-to-convert-a-pil-image-into-a-numpy-array from PIL i ...

  5. day62-html-标签

    前端 blog链接:http://www.cnblogs.com/liwenzhou/p/7988087.html 1.前端都有哪些内容? HTML CSS JavaScript jQuery Boo ...

  6. 处理Ajax请求跨域问题

    ajax跨域的原理 ajax出现请求跨域错误问题,主要原因就是因为浏览器的“同源策略”. CORS是一个W3C标准,全称是"跨域资源共享"(Cross-origin resourc ...

  7. 输入一段汉字可以获得首字母简拼的java代码

    package com.zl; import java.io.UnsupportedEncodingException; public class Test12 { public static voi ...

  8. 17.3.13--python编码问题

    1----字符编码: 字符编码(英语:Character encoding).字集码是把字符集中的字符编码为指定集合中某一对象(例如:比特模式.自然数串行.8位组或者电脉冲),以便文本在计算机中存储和 ...

  9. AddressUtils

    package com.ruoyi.common.utils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import com. ...

  10. c语言中fflush的运用为什么没有效果呢,测试平台linux

    /************************************************************************* > File Name: clearing. ...