基于候选区域的目标检测器

1.  滑动窗口检测器

根据滑动窗口从图像中剪切图像块-->将剪切的图像块warp成固定大小-->cnn网络提取特征-->SVM和regressor进行分类和回归定位

选择性搜索

2. R-CNN

R-CNN 利用候选区域方法创建了约 2000 个 ROI -->  将每个ROI区域warp成固定大小的图像--> CNN网络提取特征--> SVM和regressor进行分类和回归定位;

3. Fast R-CNN

Fast R-CNN 使用特征提取器(CNN)先提取整个图像的特征(而不是从头开始对每个图像块提取多次)--> 在特征图上,利用候选区域方法得到ROI区域,并在对应的特征图上裁剪以得到特征图块--> 将这些特征图块warp成固定大小--> 输入CNN网络提取特征--> svm/regressor 进行分类和回归;

4. Faster R-CNN

Faster R-CNN 采用与 Fast R-CNN 相同的设计,只是它用内部深层网络代替了候选区域方法。新的候选区域网络(RPN)在生成 ROI 时效率更高,并且以每幅图像 10 毫秒的速度运行。

参考:https://baijiahao.baidu.com/s?id=1598999301741831102&wfr=spider&for=pc

Rcnn/Faster Rcnn/Faster Rcnn的理解的更多相关文章

  1. Faster RCNN代码理解(Python)

    转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...

  2. 原 CNN--卷积神经网络从R-CNN到Faster R-CNN的理解(CIFAR10分类代码)

    1. 什么是CNN 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Netwo ...

  3. 一个门外汉的理解 ~ Faster R-CNN

    首先放R-CNN的原理图 显然R-CNN的整过过程大致上划分为四步: 1.输入图片 2.生成候选窗口 3.对局部窗口进行特征提取(CNN) 4.分类(Classify regions) 而R-CNN的 ...

  4. (原)faster rcnn的tensorflow代码的理解

    转载请注明出处: https://www.cnblogs.com/darkknightzh/p/10043864.html 参考网址: 论文:https://arxiv.org/abs/1506.01 ...

  5. 理解Faster R-CNN

    首先放R-CNN的原理图 显然R-CNN的整过过程大致上划分为四步: 1.输入图片 2.生成候选窗口 3.对局部窗口进行特征提取(CNN) 4.分类(Classify regions) 而R-CNN的 ...

  6. Faster R-CNN 的 RPN 是啥子?

     Faster R-CNN,由两个模块组成: 第一个模块是深度全卷积网络 RPN,用于 region proposal; 第二个模块是Fast R-CNN检测器,它使用了RPN产生的region p ...

  7. 【深度学习】目标检测算法总结(R-CNN、Fast R-CNN、Faster R-CNN、FPN、YOLO、SSD、RetinaNet)

    目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息.本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括F ...

  8. Faster R-CNN:详解目标检测的实现过程

    本文详细解释了 Faster R-CNN 的网络架构和工作流,一步步带领读者理解目标检测的工作原理,作者本人也提供了 Luminoth 实现,供大家参考.   Luminoth 实现:https:// ...

  9. 第三十一节,目标检测算法之 Faster R-CNN算法详解

    Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...

随机推荐

  1. 关于package.json和package-lock.json的区别

    package.json文件记录你项目中所需要的所有模块.当你执行npm install的时候,node会先从package.json文件中读取所有dependencies信息,然后根据depende ...

  2. 安卓之文本视图TextView及跑马灯效果

    一.基本属性和设置方法 二.跑马灯用到的属性与方法说明 三.省略方式的取值说明 四.跑马灯效果案例代码   (1)布局xml文件 <?xml version="1.0" en ...

  3. 好用的px转rem插件cssrem

    下载本项目,比如:git clone https://github.com/flashlizi/cssrem 进入packages目录:Sublime Text -> Preferences - ...

  4. python练习:假设s是一个字符串,返回s中十进制数字之和。例如,如果s是‘a2b3c’,则返回5。

    python练习:假设s是一个字符串,返回s中十进制数字之和.例如,如果s是‘a2b3c’,则返回5. 重难点:字符串转化为字符序列.in的多种应用.try-except代码块的使用. print(& ...

  5. LeetCode练题——35. Search Insert Position

    1.题目 35. Search Insert Position Easy 1781214Add to ListShare Given a sorted array and a target value ...

  6. C:clock() 计算代码执行时间

    clock():捕捉从程序开始运行到clock()被调用时所耗费的事件. 这个时间的单位是 clock tick,即时钟打点 常数 CLK_TCK:机器时钟每秒走的时钟打点数 要使用这个函数需要包含头 ...

  7. LeetCode中等题(三)

    题目一: 反转从位置 m 到 n 的链表.请使用一趟扫描完成反转. 说明:1 ≤ m ≤ n ≤ 链表长度. 示例: 输入: 1->2->3->4->5->NULL, m ...

  8. 使用13行Python代码实现四则运算计算器函数

    原创的刷新行数记录的代码!!! 支持带小括号,支持多个连续+-号,如-7.9/(-1.2-++--99.3/-4.44)*---(2998.654+-+-+-(+1.3-7.654/(-1.36-99 ...

  9. NLP直播-1 词向量与ELMo模型

    翻车2次,试水2次,今天在B站终于成功直播了. 人气11万. 主要讲了语言模型.词向量的训练.ELMo模型(深度.双向的LSTM模型) 预训练与词向量 词向量的常见训练方法 深度学习与层次表示 LST ...

  10. 深度学习之父低调开源 CapsNet,欲取代 CNN

    “卷积神经网络(CNN)的时代已经过去了!” ——Geoffrey Hinton 酝酿许久,深度学习之父Geoffrey Hinton在10月份发表了备受瞩目的Capsule Networks(Cap ...