=================第1周 循环序列模型===============

===1.1 欢迎来到深度学习工程师微专业===

  我希望可以培养成千上万的人使用人工智能,去解决真实世界的实际问题,创造一个人工智能驱动的社会。

===1.2 什么是神经网络===

  实际上隐藏节点可能并没有左图那样明确的定义,你让神经网络自己决定这个节点是什么,我们只给你四个输入特征 随便你怎么计算。注意,当我们计算层数的时候,不计算输出层。

===1.3 用神经网络进行监督学习===

  And then, for more complex applications, like autonomous driving, where you have an image, that might suggest more of a CNN structure, and radar info which is something quite different. You might end up with a more custom, or some more complex, hybrid neural network architecture.

  结构化数据 意味着每个特征比如说房屋大小、卧房数量等都有着清晰的定义。相反 非结构化数据指的是比如音频、原始音频、图像,where you might want to recognize what's in the image or text.这里的特征 可能是图像中的像素值,or the individual words in a piece of text. 从历史角度看,计算机更难理解非结构化数据。和之前相比,神经网络是计算机可以更好理解这些数据。But it turns out that a lot of short term economic value that NN are creating has also been on structured data, such as much better advertising systems, much better profit recommendations, and just a much better ability to process the giant databases that many companies have to make accurate predictions from them. 在这门课中 我们会学到很多技巧,对于两类数据都适用。

  神经网络改变了监督学习,正在创造巨大的经济价值。其实呢 基本的神经网络背后的技术理念大部分都不是新概念 有些甚至有几十年历史了。那么 为什么它们现在才流行,下节见。

===1.4 为什么深度学习会兴起===

  过去20年,很多应用中我们收集到了大量的数据,远超过传统学习算法能发挥作用的规模。要达到下图中的黑点,至少要亮点,to train a big enough neural network, take advantage of the huge amount of data。提升规模(data and NN)已经让我们在深度学习的世界中获得了大量进展。训练集较小时,各种算法的性能相对排名不是很确定,效果经常会取决于你手工设计的组件。If someone training an SVM,可能是因为手工设计组件很厉害,有些人训练的规模会大一些却没有SVM效果好。对于小训练集,最终的性能 更多取决于手工设计组件的技能以及算法处理方面的一些细节。在数据量足够大时,我们才看到NN稳定地优于其他算法。

  有趣的是 许多算法方面的创新都为了让神经网络运行得更快。举个例子,神经网络方面的一个巨大突破是从sigmoid函数转换到ReLU函数,前者会遇到梯度消失,导致学习得非常慢。还有很多其他算法创新的例子,所带来的影响是是增加计算速度,使得代码运行得更快,这也使得我们 能够训练规模更大的神经网络,或者在合理的时间内完成计算,即使在数据量很大 网络也很大的场合。The other reason that fast computation is important is that it turns out the process of training your network 很多时候是凭直觉的,有了一个idea就去试,因此加快这样的迭代过程是很重要的,能更快地改进你d的想法。

===1.5 关于这门课===

  希望你去完成对应的课堂测试和编程练习,那会很过瘾。

===1.6 课程资源===

  可以去coursera,里面的论坛是一个很好的互相交流学习平台。

Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 1. 深度学习概论)的更多相关文章

  1. Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 4. 深层神经网络)

     =================第2周 神经网络基础=============== ===4.1  深层神经网络=== Although for any given problem it migh ...

  2. Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 3. 浅层神经网络)

     =================第3周 浅层神经网络=============== ===3..1  神经网络概览=== ===3.2  神经网络表示=== ===3.3  计算神经网络的输出== ...

  3. Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 2. 神经网络基础)

     =================第2周 神经网络基础=============== ===2.1  二分分类=== ===2.2  logistic 回归=== It turns out, whe ...

  4. 学习笔记TF053:循环神经网络,TensorFlow Model Zoo,强化学习,深度森林,深度学习艺术

    循环神经网络.https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/re ...

  5. Hinton“深度学习之父”和“神经网络先驱”,新论文Capsule将推翻自己积累了30年的学术成果时

    Hinton“深度学习之父”和“神经网络先驱”,新论文Capsule将推翻自己积累了30年的学术成果时 在论文中,Capsule被Hinton大神定义为这样一组神经元:其活动向量所表示的是特定实体类型 ...

  6. DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络

    介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程 ...

  7. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  8. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  9. Andrew Ng机器学习算法入门(二):机器学习分类

    机器学习的定义 Arthur Samuel给出的定义,Field of Study that gives computers the ability to learn without being ex ...

随机推荐

  1. Kubernetes学习笔记(七):访问Pod元数据与Kubernetes API

    Downward API 我们已经了解到,使用ConfigMap和Secret向应用传递配置数据,这对于运行前预设的数据是可行的.但是对于那些不能预先知道的,就需要使用Downward API. Do ...

  2. ngnix随笔四

    1.alias path 例1. =>http://www.a.com/bbs/ root /data/vhosts/; location /bbs/{ alias /data/a.com/; ...

  3. vue采用history路由的服务器部署问题

    发现部署问题 在部署的时候发现打开的页面是空白 之前部署原理 之前的页面都是作为静态文件形式打包上传到服务器上 http://www.xiedashuaige.cn/bolg2.0/#/home 就和 ...

  4. [Firefox附加组件]0003.弹出对话框

    Firefox中使用面板(panel)模块来显示弹出对话框,面板的内容通过HTML编写.你可以在面板上运行content script,尽管在面板里的脚本无法直接访问插件代码,但是你可以在面板脚本和插 ...

  5. Xilinx ISE多功能移位寄存器仿真及Basys2实验板实验

    移位寄存器实现Verilog代码: `timescale 1ns / 1ps module add( input clk, input reset, input [1:0] s, input dl, ...

  6. Maven快速入门(三)Maven的坐标和仓库

    之前通过一个helloworld的例子来说一说如何创建maven项目以及maven项目的项目结构,然后讲maven如何编译运行项目.接下来介绍maven中几个比较重要的概念:坐标和仓库.Maven快速 ...

  7. 关于zabbix利用snmp协议从交换机获取的端口带宽数据的概念问题

    关于zabbix利用snmp协议从交换机获取的端口带宽数据的概念问题:使用端口OID号获得的数据实际是即时的端口总数据量,而在计算带宽时,需要选择一个时间段,在时间段的结束点获得的总数据量减去在时间段 ...

  8. Typora 使用 Markdown 嵌入 LaTeX 数学公式符号语法

    博客园不支持渲染 LaTeX 数学公式,需要用到什么公式,请复制到您所用的支持 LaTeX 的编辑器中查看实现效果.Typora 可以渲染 LaTeX 数学公式. 目录 行内与独行 行内公式 独行公式 ...

  9. Java实现 LeetCode 488 祖玛游戏

    488. 祖玛游戏 回忆一下祖玛游戏.现在桌上有一串球,颜色有红色,黄色(Y),蓝色(B),绿色(G),还有白色(W). 现在你手里也有几个球. 每一次,你可以从手里的球选一个,然后把这个球插入到一串 ...

  10. Java实现最大连续乘积子数组

    1 问题描述 给定一个浮点数组,任意取出数组中的若干个连续的数相乘,请找出其中乘积最大的子数组. 2 解决方案 2.1 蛮力法 该方法的时间复杂度为O(n^2). package com.liuzhe ...