Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 1. 深度学习概论)
=================第1周 循环序列模型===============
===1.1 欢迎来到深度学习工程师微专业===
我希望可以培养成千上万的人使用人工智能,去解决真实世界的实际问题,创造一个人工智能驱动的社会。
===1.2 什么是神经网络===
实际上隐藏节点可能并没有左图那样明确的定义,你让神经网络自己决定这个节点是什么,我们只给你四个输入特征 随便你怎么计算。注意,当我们计算层数的时候,不计算输出层。


===1.3 用神经网络进行监督学习===
And then, for more complex applications, like autonomous driving, where you have an image, that might suggest more of a CNN structure, and radar info which is something quite different. You might end up with a more custom, or some more complex, hybrid neural network architecture.

结构化数据 意味着每个特征比如说房屋大小、卧房数量等都有着清晰的定义。相反 非结构化数据指的是比如音频、原始音频、图像,where you might want to recognize what's in the image or text.这里的特征 可能是图像中的像素值,or the individual words in a piece of text. 从历史角度看,计算机更难理解非结构化数据。和之前相比,神经网络是计算机可以更好理解这些数据。But it turns out that a lot of short term economic value that NN are creating has also been on structured data, such as much better advertising systems, much better profit recommendations, and just a much better ability to process the giant databases that many companies have to make accurate predictions from them. 在这门课中 我们会学到很多技巧,对于两类数据都适用。

神经网络改变了监督学习,正在创造巨大的经济价值。其实呢 基本的神经网络背后的技术理念大部分都不是新概念 有些甚至有几十年历史了。那么 为什么它们现在才流行,下节见。
===1.4 为什么深度学习会兴起===
过去20年,很多应用中我们收集到了大量的数据,远超过传统学习算法能发挥作用的规模。要达到下图中的黑点,至少要亮点,to train a big enough neural network, take advantage of the huge amount of data。提升规模(data and NN)已经让我们在深度学习的世界中获得了大量进展。训练集较小时,各种算法的性能相对排名不是很确定,效果经常会取决于你手工设计的组件。If someone training an SVM,可能是因为手工设计组件很厉害,有些人训练的规模会大一些却没有SVM效果好。对于小训练集,最终的性能 更多取决于手工设计组件的技能以及算法处理方面的一些细节。在数据量足够大时,我们才看到NN稳定地优于其他算法。

有趣的是 许多算法方面的创新都为了让神经网络运行得更快。举个例子,神经网络方面的一个巨大突破是从sigmoid函数转换到ReLU函数,前者会遇到梯度消失,导致学习得非常慢。还有很多其他算法创新的例子,所带来的影响是是增加计算速度,使得代码运行得更快,这也使得我们 能够训练规模更大的神经网络,或者在合理的时间内完成计算,即使在数据量很大 网络也很大的场合。The other reason that fast computation is important is that it turns out the process of training your network 很多时候是凭直觉的,有了一个idea就去试,因此加快这样的迭代过程是很重要的,能更快地改进你d的想法。

===1.5 关于这门课===
希望你去完成对应的课堂测试和编程练习,那会很过瘾。

===1.6 课程资源===
可以去coursera,里面的论坛是一个很好的互相交流学习平台。
Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 1. 深度学习概论)的更多相关文章
- Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 4. 深层神经网络)
=================第2周 神经网络基础=============== ===4.1 深层神经网络=== Although for any given problem it migh ...
- Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 3. 浅层神经网络)
=================第3周 浅层神经网络=============== ===3..1 神经网络概览=== ===3.2 神经网络表示=== ===3.3 计算神经网络的输出== ...
- Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 2. 神经网络基础)
=================第2周 神经网络基础=============== ===2.1 二分分类=== ===2.2 logistic 回归=== It turns out, whe ...
- 学习笔记TF053:循环神经网络,TensorFlow Model Zoo,强化学习,深度森林,深度学习艺术
循环神经网络.https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/re ...
- Hinton“深度学习之父”和“神经网络先驱”,新论文Capsule将推翻自己积累了30年的学术成果时
Hinton“深度学习之父”和“神经网络先驱”,新论文Capsule将推翻自己积累了30年的学术成果时 在论文中,Capsule被Hinton大神定义为这样一组神经元:其活动向量所表示的是特定实体类型 ...
- DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程 ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习算法入门(二):机器学习分类
机器学习的定义 Arthur Samuel给出的定义,Field of Study that gives computers the ability to learn without being ex ...
随机推荐
- pytest跳过指定的测试或模块
参考Allure官方文档,pytest官方文档 实现setup/teardown 1.运行带指定标记的测试 @pytest.mark.tags ,这里的tags可以自定义 命令行执行:pytest - ...
- 集合框架之ArrayList -Java
ArrayList 1.与数组的区别 如果要存放多个对象,可以使用数组,但是数组会有长度的限制,会出现不够用或者是浪费的情况. 为了解决数组的局限性引入了容器的概念,最常用的容器就是ArrayList ...
- pyqt5-多线程初步
多线程是实现并发的一个重要手段.在GUI编程中,经常需要将耗费时间较多的任务分离出来成为一个线程,避免对主线程造成影响(造成界面无响应). 在Qt中,最简单的多线程主要通过继承QThread类实现,重 ...
- Java集合(十)实现Map接口的HashMap
Java集合(十)继承Map接口的HashMap 一.HashMap简介(基于JDK1.8) HashMap是基于哈希表(散列表),实现Map接口的双列集合,数据结构是“链表散列”,也就是数组+链表 ...
- Library source does not match the bytecode for class 最佳解决方案
首先分析问题 打完的jar包,编译的后class跟java文件不一致,原因是重新打包后还是引用之前的java文件,不能重新加载新生成的jar. 解决方案 方案一 IDEA 工具,点击File > ...
- 郭盛华:DNS新漏洞可使黑客可以发起大规模DDoS攻击
近日,知名网络黑客安全专家.东方联盟创始人郭盛华微博披露了有关影响DNS协议的新缺陷的详细信息,该缺陷可被利用来发起放大的大规模分布式拒绝服务(DDoS)攻击,以击倒目标网站.该漏洞称为NXNSAtt ...
- [统计信息系列7] Oracle 11g的自动统计信息收集
(一)统计信息收集概述 在Oracle 11g中,默认有3个自动任务,分别是:自动统计信息收集.SQL调优顾问.段空间调整顾问,查看方法如下: SQL> SELECT CLIENT_NAME,T ...
- Java并发编程 (一) 导读
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 一.并发编程相关技术栈 1.内容主要为高并发的解决思路与手段,具体涉及: 2.涉及的基础知识与核心知 ...
- Linux (一)概述
认识操作系统 操作系统的作用 把计算机系统中对硬件设备的操作封装起来,供应用软件调用. 2. 常见操作系统 1.2.1 PC端OS 1.2.2 移动端OS 1.2.3 服 ...
- Java实现 蓝桥杯VIP 基础练习 龟兔赛跑预测
题目描述 话说这个世界上有各种各样的兔子和乌龟,但是 研究发现,所有的兔子和乌龟都有一个共同的特点--喜欢赛跑.于是世界上各个角落都不断在发生着乌龟和兔子的比赛,小华对此很感兴趣,于是决定研究不同兔 ...