POJ1436
题目链接:https://vjudge.net/problem/POJ-1436
解题思路:基于y轴建立线段树。
如图是根据样例画出的图。下面都以题目样例为例。
但是,如果仅仅以给出的y1, y2为边界的话会出现线段的最右点被当成一小段线段的问题,样例中的x=4的线段和x=1的线段会被判定“不可见”。为了方便处理边界情况,我们把y1和y2都乘2再存入线段树中,这也是用线段树解决问题的时候常用的处理边界争议的方法。
在每次存入线段的时候,先检查一下已有的线段树,看看以我们要存入的线段的端点[y1,y2]为边界的线段上是否已有线段,如果有,以一个二维数组记录起来。最后以几个for循环来得出ans。
注意:用bool型代替int型可节省很多空间。一开始那个link[ ][ ]数组我是用int型的,然后提交的时候一直MLE,后来看了网上的题解,知道了这个点,把int改成bool就AC了。
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int y=8000*2;
const int maxn=8000+5;
int tree[y<<2];
bool link[maxn][maxn];
struct side{
int y1,y2,x;
bool operator <(const side &a)const{
return x<a.x;
}
}tmp[maxn];
void pushdown(int rt){
tree[rt<<1]=tree[rt<<1|1]=tree[rt];
tree[rt]=-1;
}
void build(int L,int R,int x,int l,int r,int rt){
if(L<=l&&r<=R){
tree[rt]=x;
return;
}
if(l==r) return;
if(tree[rt]!=-1)
pushdown(rt);
if(L<=(l+r)/2) build(L,R,x,l,(l+r)/2,rt<<1);
if((l+r)/2<R) build(L,R,x,(l+r)/2+1,r,rt<<1|1);
}
void query(int L,int R,int index,int l,int r,int rt){
if(tree[rt]!=-1){
link[tree[rt]][index]=true;
return;
}
if(l==r)
return;
if(L<=(l+r)/2) query(L,R,index,l,(l+r)/2,rt<<1);
if((l+r)/2<R) query(L,R,index,(l+r)/2+1,r,rt<<1|1);
}
int main(){
int n,ans;
int d,i,j;
scanf("%d",&d);
while(d--){
memset(tree,-1,sizeof(tree));
memset(link,false,sizeof(link));
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d%d%d",&tmp[i].y1,&tmp[i].y2,&tmp[i].x);
sort(tmp,tmp+n);
for(i=0;i<n;i++){
query(tmp[i].y1*2,tmp[i].y2*2,i,0,y,1);
build(tmp[i].y1*2,tmp[i].y2*2,i,0,y,1);
}
ans=0;
for(i=0;i<n;i++)
for(j=i+1;j<n;j++){
if(link[i][j]){
for(int k=i+1;k<j;k++){
if(link[i][k]&&link[k][j])
ans++;
}
}
}
printf("%d\n",ans);
}
return 0;
}
POJ1436的更多相关文章
- poj1436 Horizontally Visible Segments
这是一个区间更新的题目,先将区间放大两倍,至于为什么要放大可以这样解释,按照从左到右有4个区间,y值是[1,5],[1,2],[3,4],[1,4]如果不放大的话,查询[1,4]区间和前面区间的”可见 ...
- poj1436水平可见线
还是线段树区间更新,这次不需要对线段离散化,但是要把线段纵坐标*2,可以举例模拟 #include<iostream> #include<cstring> #include&l ...
- 【37%】【poj1436】Horizontally Visible Segments
Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5200 Accepted: 1903 Description There ...
- [转载]完全版线段树 by notonlysuccess大牛
原文出处:http://www.notonlysuccess.com/ (好像现在这个博客已经挂掉了,在网上找到的全部都是转载) 今天在清北学堂听课,听到了一些很令人吃惊的消息.至于这消息具体是啥,等 ...
- 【转】线段树完全版~by NotOnlySuccess
线段树完全版 ~by NotOnlySuccess 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章了,觉 ...
- 《完全版线段树》——notonlysuccess
转载自:NotOnlySuccess的博客 [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文 ...
- 【转】 线段树完全版 ~by NotOnlySuccess
载自:NotOnlySuccess的博客 [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章 ...
- 【转载】完全版线段树 by notonlysuccess大牛
原文出处:http://www.notonlysuccess.com/ 今晚上比赛就考到了 排兵布阵啊,难受. [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时 ...
随机推荐
- Scala教程之:面向对象的scala
文章目录 面向对象的scala Unified Types Classes Traits 面向对象的scala 我们知道Scala是一种JVM语言,可以合java无缝衔接,这也就大大的扩展了scala ...
- zabbix管理,添加监控主机
一:添加本机为监控主机 二.监控其他Linux主机agent端 1.环境部署 [root@localhost ~]# hostname agent.zabbix.com[root@localhost ...
- js 实现图片瀑布流效果,可更改配置参数 带完整版解析代码[waterFall.js]
前言: 本人纯小白一个,有很多地方理解的没有各位大牛那么透彻,如有错误,请各位大牛指出斧正!小弟感激不尽. 本篇文章为您分析一下原生JS实现图片瀑布流效果 页面需求 1 ...
- 【Linux题目】第九关
前言:项目整合 企业项目实战考试: 1. 全网备份解决方案实战 2. NFS集群后段共享存储搭建优化 3. 解决NFS单点实现实时数据同步. 环境: 服务器角色 外网ip 内网ip 主机名 web 1 ...
- 第十届山东省赛L题Median(floyd传递闭包)+ poj1975 (昨晚的课程总结错了,什么就出度出度,那应该是叫讨论一个元素与其余的关系)
Median Time Limit: 1 Second Memory Limit: 65536 KB Recall the definition of the median of elements w ...
- 深度学习环境搭建:window10+CUDA10.0+CUDNN+pytorch1.2.0
去年底入手一台联想Y7000P,配置了Nvidia GeForce GTX 1660 Ti GPU,GPU内存6G,但是因为有GPU服务器,所以一直没有在这台笔记本上跑过模型,如今经过一番折腾,终于在 ...
- 2249: Altruistic Amphibians 01背包的应用 + lh的简单图论 图转树求lca
第一个 写了两个比较简单的数论题目,就是整除理论的两个题目,第一个题目比较蠢,第二个稍微要动一点脑筋 Codeforces Round #347 (Div. 2) – A. Complicated G ...
- jQuery中bind()与on()绑定事件的区别
.on()方法比.bind()方法多一个参数selector .on()的selector参数是筛选出调用.on()方法的dom元素的指定子元素,如: $("ul").on('cl ...
- for do-while while区别
分别用for do-while while求1-100的和
- 假如用王者荣耀的方式学习webpack
英雄介绍 崴博.派克诞生于遥远西方的勇士之地,拥有着高超的机械技艺,善于运用各种工具来实现一些看似不可能完成的事.游历王者大陆时机缘巧合遇到了年轻的墨子,与之成为好友.后协助大宗师墨子建造了大陆第一雄 ...