HDU 3018 欧拉回路
Ant Country consist of N towns.There are M roads connecting the towns.
Ant Tony,together with his friends,wants to go through every part of the country.
They intend to visit every road , and every road must be visited for exact one time.However,it may be a mission impossible for only one group of people.So they are trying to divide all the people into several groups,and each may start at different town.Now tony wants to know what is the least groups of ants that needs to form to achieve their goal.
InputInput contains multiple cases.Test cases are separated by several blank lines. Each test case starts with two integer N(1<=N<=100000),M(0<=M<=200000),indicating that there are N towns and M roads in Ant Country.Followed by M lines,each line contains two integers a,b,(1<=a,b<=N) indicating that there is a road connecting town a and town b.No two roads will be the same,and there is no road connecting the same town.OutputFor each test case ,output the least groups that needs to form to achieve their goal.Sample Input
3 3
1 2
2 3
1 3 4 2
1 2
3 4
Sample Output
1
2
Hint
New ~~~ Notice: if there are no road connecting one town ,tony may forget about the town.
In sample 1,tony and his friends just form one group,they can start at either town 1,2,or 3.
In sample 2,tony and his friends must form two group.
给出一个图,问几笔画才能经过所有边。
欧拉回路,知识点已经在上个博客提到。对于每个点的出度,如果存在奇数,那么需要奇数/2笔才能经过所有的点。
给出的图并没有说明是否为连通图,所以可能有多个图,那么这种情况,ans=奇数度个数/2+欧拉回路个数(只含偶数点的集合)
解析在代码里
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=1e5+; //jishu/2+oulatu
int pr[maxn],cnt[maxn],mark[maxn];
int n,m;
int ans=;
void first()
{
for(int i=;i<=n;i++)
{
pr[i]=i;
}
memset(cnt,,sizeof(cnt));
memset(mark,,sizeof(mark));
ans=;
}
int find(int x)
{
if(x!=pr[x])
return pr[x]=find(pr[x]);
return x;
}
void join(int a,int b)
{
int f1=find(a),f2=find(b);
if(f1!=f2)
pr[f1]=f2;
return;
}
void ac()
{
for(int i=;i<=n;i++)
{
if(cnt[i]%!=)
{
int f=find(i); //统计奇数度点数量。用mark[]数组来记录,如果i点奇度,那么i所在图不是欧拉回路,那么i的根节点标为1,代表此图不是欧拉回路。
mark[f]=;
ans++;
}
}
ans/=;
for(int i=;i<=n;i++) //统计欧拉回路图
{
if(cnt[i]>) //比如输入,9 3 9个点只给出了3个关系,肯定有点不算,cnt[i]=0,不能纳入计算。
{
int f=find(i); //找到i的根节点,如果没被标为1,说明i出度为偶数,而且满足pr[i]==i(i==f)(即搜到x==pr[x]时还是没被标记)说明此图是个欧拉回路,因为如果存在奇度点,i==pr[i]
//处肯定被标记了。 ans++;
if(mark[f]==&&pr[i]==i)
{
ans++;
}
}
}
}
int main()
{
while(cin>>n>>m)
{
first(); //初始化
for(int i=;i<=m;i++)
{
int a,b;
cin>>a>>b;
join(a,b);
cnt[a]++; //加入并查集,统计入度出度
cnt[b]++;
}
ac();
cout<<ans<<endl;
}
return ;
}
HDU 3018 欧拉回路的更多相关文章
- [欧拉回路] hdu 3018 Ant Trip
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3018 Ant Trip Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 3018 Ant Trip (并查集求连通块数+欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3018 题目大意:有n个点,m条边,人们希望走完所有的路,且每条道路只能走一遍.至少要将人们分成几组. ...
- HDU 3018 Ant Trip (欧拉回路)
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 3018 Ant Trip(欧拉回路,要几笔)
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 3018 Ant Trip 欧拉回路+并查集
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...
- hdu 1116 欧拉回路+并查集
http://acm.hdu.edu.cn/showproblem.php?pid=1116 给你一些英文单词,判断所有单词能不能连成一串,类似成语接龙的意思.但是如果有多个重复的单词时,也必须满足这 ...
- HDU 1878 欧拉回路(判断欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...
- HDU 1878 欧拉回路
并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...
- HDU 1878 欧拉回路 图论
解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...
随机推荐
- JAVA Random 详解
Java中存在着两种Random函数: 一.java.lang.Math.Random; 调用这个Math.Random()函数能够返回带正号的double值,该值大于等于0.0且小于1.0,即取值范 ...
- IDEA maven 项目报警告解决(自己的maven配置记录)
IDEA maven 项目报警告解决 应该是JDK版本太低 虽然你装的高但是默认使用maven 默认的 这里要配一下JDK版本 理解不深入只为 自己记录使用 1 配置 仓库为阿里云 配置本地储存j ...
- 原生searchView 自定义样式
https://www.jianshu.com/p/f1fe616d630d 去除搜索框中的图标 <style name="SeachViewActivityTheme" p ...
- CAN网络上新增加的设备与网络上已有设备MAC地址冲突的软件解决方案
已知 1号的CAN节点的地址是0x1f 2号的CAN 节点的地址是0x1f 要达到的要求是 假设 网络上 CAN1 节点已经工作了,我现在需要在网络上接入CAN2节点. 那么CAN2节点首次上电的时候 ...
- VLC搭建RTSP服务器的过程
第一步,打开VLC 第二步:在媒体下拉菜单下!有一个子菜单“串流”如图所示: 点击“串流”子菜单 弹出一个窗口!如下图所示. 添加一个你要串流的本地文件,我刚才传给你的那个长一点的文件. 第三步,会出 ...
- 指令——rm
一个完整的指令的标准格式: Linux通用的格式——#指令主体(空格) [选项](空格) [操作对象] 一个指令可以包含多个选项,操作对象也可以是多个. 指令:rm (remove,移除.删除) 作用 ...
- JVM探秘:jstack查看Java线程状态
本系列笔记主要基于<深入理解Java虚拟机:JVM高级特性与最佳实践 第2版>,是这本书的读书笔记. jstack命令可以打印Java进程的各个线程堆栈跟踪信息,可以用来查看Java中各个 ...
- Windows平台整合SpringBoot+KAFKA__第3部分_代码部分(结束)
重要的地方说下,算是给自己提醒,也给阅读者凑合着看看吧: (1)序列化.反序列化: 注意看这个文章 https://www.jianshu.com/p/5da86afed228 很多网上的例子都是 推 ...
- 七、JavaScript之console.log输出和document.write输出
一.代码如下 二.运行效果如下 三.点击之后,效果如下 四.按一下F12,在控制台中可以看到
- 127-PHP类通过魔术变量判断类中是否存在指定的方法
<?php class ren{ //定义人类 //定义成员属性 private $name='Tom'; private $age=15; //定义成员方法 public function g ...