HDU 3018 欧拉回路
Ant Country consist of N towns.There are M roads connecting the towns.
Ant Tony,together with his friends,wants to go through every part of the country.
They intend to visit every road , and every road must be visited for exact one time.However,it may be a mission impossible for only one group of people.So they are trying to divide all the people into several groups,and each may start at different town.Now tony wants to know what is the least groups of ants that needs to form to achieve their goal.
InputInput contains multiple cases.Test cases are separated by several blank lines. Each test case starts with two integer N(1<=N<=100000),M(0<=M<=200000),indicating that there are N towns and M roads in Ant Country.Followed by M lines,each line contains two integers a,b,(1<=a,b<=N) indicating that there is a road connecting town a and town b.No two roads will be the same,and there is no road connecting the same town.OutputFor each test case ,output the least groups that needs to form to achieve their goal.Sample Input
3 3
1 2
2 3
1 3 4 2
1 2
3 4
Sample Output
1
2
Hint
New ~~~ Notice: if there are no road connecting one town ,tony may forget about the town.
In sample 1,tony and his friends just form one group,they can start at either town 1,2,or 3.
In sample 2,tony and his friends must form two group.
给出一个图,问几笔画才能经过所有边。
欧拉回路,知识点已经在上个博客提到。对于每个点的出度,如果存在奇数,那么需要奇数/2笔才能经过所有的点。
给出的图并没有说明是否为连通图,所以可能有多个图,那么这种情况,ans=奇数度个数/2+欧拉回路个数(只含偶数点的集合)
解析在代码里
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=1e5+; //jishu/2+oulatu
int pr[maxn],cnt[maxn],mark[maxn];
int n,m;
int ans=;
void first()
{
for(int i=;i<=n;i++)
{
pr[i]=i;
}
memset(cnt,,sizeof(cnt));
memset(mark,,sizeof(mark));
ans=;
}
int find(int x)
{
if(x!=pr[x])
return pr[x]=find(pr[x]);
return x;
}
void join(int a,int b)
{
int f1=find(a),f2=find(b);
if(f1!=f2)
pr[f1]=f2;
return;
}
void ac()
{
for(int i=;i<=n;i++)
{
if(cnt[i]%!=)
{
int f=find(i); //统计奇数度点数量。用mark[]数组来记录,如果i点奇度,那么i所在图不是欧拉回路,那么i的根节点标为1,代表此图不是欧拉回路。
mark[f]=;
ans++;
}
}
ans/=;
for(int i=;i<=n;i++) //统计欧拉回路图
{
if(cnt[i]>) //比如输入,9 3 9个点只给出了3个关系,肯定有点不算,cnt[i]=0,不能纳入计算。
{
int f=find(i); //找到i的根节点,如果没被标为1,说明i出度为偶数,而且满足pr[i]==i(i==f)(即搜到x==pr[x]时还是没被标记)说明此图是个欧拉回路,因为如果存在奇度点,i==pr[i]
//处肯定被标记了。 ans++;
if(mark[f]==&&pr[i]==i)
{
ans++;
}
}
}
}
int main()
{
while(cin>>n>>m)
{
first(); //初始化
for(int i=;i<=m;i++)
{
int a,b;
cin>>a>>b;
join(a,b);
cnt[a]++; //加入并查集,统计入度出度
cnt[b]++;
}
ac();
cout<<ans<<endl;
}
return ;
}
HDU 3018 欧拉回路的更多相关文章
- [欧拉回路] hdu 3018 Ant Trip
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3018 Ant Trip Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 3018 Ant Trip (并查集求连通块数+欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3018 题目大意:有n个点,m条边,人们希望走完所有的路,且每条道路只能走一遍.至少要将人们分成几组. ...
- HDU 3018 Ant Trip (欧拉回路)
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 3018 Ant Trip(欧拉回路,要几笔)
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 3018 Ant Trip 欧拉回路+并查集
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...
- hdu 1116 欧拉回路+并查集
http://acm.hdu.edu.cn/showproblem.php?pid=1116 给你一些英文单词,判断所有单词能不能连成一串,类似成语接龙的意思.但是如果有多个重复的单词时,也必须满足这 ...
- HDU 1878 欧拉回路(判断欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...
- HDU 1878 欧拉回路
并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...
- HDU 1878 欧拉回路 图论
解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...
随机推荐
- Centos7忘记mysql的root用户密码
1.先停止mysql服务 [root@CentOS ~]# ps -ef | grep mysql root : pts/ :: /bin/sh /usr/local/mysql/bin/mysql ...
- POJ 3916:Duplicate Removal 将相近的重复元素删除
Duplicate Removal Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1745 Accepted: 1213 ...
- JavaScript中的apply()方法和call()
apply()和call()的真正用武之地是能够扩充函数赖以运行的作用域 两个函数的第一个参数是都是,要执行语句的作业域,即this 区别是 apply后面只能传一个大参数,call后面参数只能一 ...
- AFNetworking实现表单(multipart)形式上传图片
最近遇到个问题,就是上传图片到服务器,后台说用表单形式... 由于没弄过这种上传,所以搜了大堆资料,但也没解决问题. 最后通过请教一位大神才得以解决这个简单的问题... 现在将此方法做个笔记... & ...
- Java中的日期表示类
一.概述 Java中的日期类设计的比较失败,刚开始使用Date来计算时间,后来大部分Date类的方法都过时了:想用Calendar类代替Date类,然而Calendar类也是不尽如人意.下面简单介绍下 ...
- Bulma CSS - CSS类
Bulma CSS框架教程 Bulma CSS – 简介 Bulma CSS – 开始 Bulma CSS – CSS类 Bulma CSS – 模块化 Bulma CSS – 响应式 Bulma是一 ...
- java基础源码 (5)--reflect包-AccessibleObject类
学习参考博客:https://blog.csdn.net/benjaminzhang666/article/details/9664585AccessibleObject类基本作用 1.将反射的对象标 ...
- [ACTF2020 新生赛]Exec
0x00 知识点 命令执行 这里见了太多了..以前也写过: https://www.cnblogs.com/wangtanzhi/p/12246386.html 命令执行的方法大抵是加上管道符或者分号 ...
- POJ - 1753 Flip Game (IDA*)
题意:4*4的棋盘摆满棋子,有黑有白,翻转一个棋子的同时也将翻转其上下左右的棋子(翻转后黑变白,白变黑),问使棋盘上所有棋子颜色相同,最少翻转的棋子数. 分析: 1.每个棋子至多翻转1次.翻转偶数次与 ...
- jQuery琐碎
函数(以click事件为例)在jsp页面和js中的不同写法 onclick="getInfo(this);" function getInfo(obj){ var $this=$( ...