本文仅代码,无理论解释

实话实说,我觉得这个算法在C系列的语言下,简直垃圾到爆炸……毕竟是一群完全不懂程序数学家对着纸弄出来的,看起来好像非常的有用,实际上耗时是非常爆炸的。

但是《算法导论》里有啊……然后上课又要求手写一个

于是我就手写了一个……我尽可能的减少使用的空间同时加快速度了,当 n = 512 的时候,内存使用量峰值没有超过 10mb,而且是通过递归实现 Strassen 算法

其中,in.txt 已经预先准备了 3000000 个范围在 0-100 随机数,避免程序在运算过程中爆 int(虽然完全可以取1000)

/**
* Created by Mauve on 3/29/2020.
* Copyright © 2020 Mauve, All Rights Reserved
*/ #include <bits/stdc++.h> using namespace std; /**
* 矩阵相乘
* 最终结果耗时结果保存至
* https://www.desmos.com/calculator/gl4tm5i1zu
*/ struct mat {
unsigned row, col; mat(unsigned r, unsigned c) : row(r), col(c) {} virtual int &pos_ref(unsigned i, unsigned j) = 0; virtual int pos(unsigned i, unsigned j) const = 0;
}; struct base_mat;
struct sub_mat; stack<sub_mat *> sub_data; struct base_mat : mat {
int *data; base_mat(unsigned r, unsigned c) : mat(r, c), data(new int[row * col]) {} ~base_mat() {
delete[] data;
} inline int &pos_ref(unsigned i, unsigned j) override {
return *(data + i * col + j);
} inline int pos(unsigned i, unsigned j) const override {
return *(data + i * col + j);
}
}; unsigned min_mul; struct sub_mat : mat {
mat *a, *b;
bool is_add;
unsigned offset_ai, offset_aj, offset_bi, offset_bj; explicit sub_mat(mat *data) : mat(data->row, data->col), a(data), b(nullptr),
is_add(false), offset_ai(0), offset_aj(0),
offset_bi(0), offset_bj(0) { sub_data.push(this); } sub_mat(mat *data, bool of_i, bool of_j) : mat(data->row >> 1u, data->col >> 1u), a(data), b(nullptr),
is_add(false), offset_ai(of_i ? data->row >> 1u : 0),
offset_aj(of_j ? data->col >> 1u : 0),
offset_bi(0), offset_bj(0) { sub_data.push(this); } inline int &pos_ref(unsigned i, unsigned j) override {
assert(b == nullptr);
return a->pos_ref(i + offset_ai, j + offset_aj);
} inline int pos(unsigned i, unsigned j) const override {
if (b == nullptr)
return a->pos(i + offset_ai, j + offset_aj);
return a->pos(i + offset_ai, j + offset_aj) + (is_add ? 1 : -1) * b->pos(i + offset_bi, j + offset_bj);
} inline sub_mat *operator+(sub_mat &other) {
auto res = new sub_mat(this);
res->b = &other;
res->is_add = true;
return res;
} inline sub_mat *operator-(sub_mat &other) {
auto res = new sub_mat(this);
res->b = &other;
res->is_add = false;
return res;
} mat *operator*(sub_mat &other) {
assert(col == other.row);
auto res = new base_mat(row, other.col);
if (col & 1u || row & 1u || col <= min_mul || row <= min_mul || other.col <= min_mul) {
memset(res->data, 0, sizeof(int) * res->row * res->col);
for (int k = 0; k < col; k++)
for (int i = 0; i < row; ++i)
for (int j = 0; j < other.col; ++j)
res->pos_ref(i, j) += pos(i, k) * other.pos(k, j);
} else {
size_t sub_data_size = sub_data.size();
#define a(i, j) (*new sub_mat(this, i == 2 , j == 2))
#define b(i, j) (*new sub_mat(&other, i == 2 , j == 2))
auto m1 = *(a(1, 1) + a(2, 2)) * *(b(1, 1) + b (2, 2));
auto m2 = *(a(2, 1) + a(2, 2)) * b(1, 1);
auto m3 = a(1, 1) * *(b(1, 2) - b(2, 2));
auto m4 = a(2, 2) * *(b(2, 1) - b(1, 1));
auto m5 = *(a(1, 1) + a(1, 2)) * b(2, 2);
auto m6 = *(a(2, 1) - a(1, 1)) * *(b(1, 1) + b(1, 2));
auto m7 = *(a(1, 2) - a(2, 2)) * *(b(2, 1) + b(2, 2));
#undef a
#undef b
unsigned half_row = row >> 1u, half_col = col >> 1u;
#define m(t) (m##t->pos(i, j))
// C11
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i, j) = m(1) + m(4) - m(5) + m(7);
// C12
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i, j + half_col) = m(3) + m(5);
// C21
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i + half_row, j) = m(2) + m(4);
// C22
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i + half_row, j + half_col) = m(1) - m(2) + m(3) + m(6);
#undef m
delete dynamic_cast<base_mat *>(m1);
delete dynamic_cast<base_mat *>(m2);
delete dynamic_cast<base_mat *>(m3);
delete dynamic_cast<base_mat *>(m4);
delete dynamic_cast<base_mat *>(m5);
delete dynamic_cast<base_mat *>(m6);
delete dynamic_cast<base_mat *>(m7);
while (sub_data.size() > sub_data_size) {
delete sub_data.top();
sub_data.pop();
}
}
return res;
}
}; unsigned N = 2; void solve() {
cerr << "N = " << N << endl;
base_mat a(N, N), b(N, N);
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
cin >> a.pos_ref(i, j);
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
cin >> b.pos_ref(i, j); for (int t = 1; t < min(10u, N); t += 3) {
auto x = new sub_mat(&a), y = new sub_mat(&b);
min_mul = t; auto time_1 = clock();
auto z = *x * *y;
auto time_2 = clock(); cerr << "t = " << t << " time: " << double(time_2 - time_1) / CLOCKS_PER_SEC << endl;
delete dynamic_cast<base_mat *>(z);
while (!sub_data.empty()) {
delete sub_data.top();
sub_data.pop();
}
} auto x = new sub_mat(&a), y = new sub_mat(&b);
min_mul = 10000; auto time_1 = clock();
auto z = *x * *y;
auto time_2 = clock(); cerr << "tradition: " << double(time_2 - time_1) / CLOCKS_PER_SEC << endl;
delete dynamic_cast<base_mat *>(z);
while (!sub_data.empty()) {
delete sub_data.top();
sub_data.pop();
}
N *= 2;
if (N >= 1000) exit(0);
} signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
#ifdef ACM_LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
long long test_index_for_debug = 1;
char acm_local_for_debug;
while (cin >> acm_local_for_debug && acm_local_for_debug != '~') {
cin.putback(acm_local_for_debug);
if (test_index_for_debug > 20) {
throw runtime_error("Check the stdin!!!");
}
auto start_clock_for_debug = clock();
solve();
auto end_clock_for_debug = clock();
cout << "Test " << test_index_for_debug << " successful" << endl;
cerr << "Test " << test_index_for_debug++ << " Run Time: "
<< double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
cout << "--------------------------------------------------" << endl;
}
#else
solve();
#endif
return 0;
}

【C++】Strassen算法代码的更多相关文章

  1. 【算法导论C++代码】Strassen算法

    简单方阵矩乘法 SQUARE-MATRIX-MULTIPLY(A,B) n = A.rows let C be a new n*n natrix to n to n cij = to n cij=ci ...

  2. Conquer and Divide经典例子之Strassen算法解决大型矩阵的相乘

    在通过汉诺塔问题理解递归的精髓中我讲解了怎么把一个复杂的问题一步步recursively划分了成简单显而易见的小问题.其实这个解决问题的思路就是算法中常用的divide and conquer, 这篇 ...

  3. Strassen算法

    如题,该算法是来自德国的牛逼的数学家strassen搞出来的,因为把n*n矩阵之间的乘法复杂度降低到n^(lg7)(lg的底是2),一开始想当然地认为朴素的做法是n^3,哪里还能有复杂度更低的做法,但 ...

  4. 4-2.矩阵乘法的Strassen算法详解

    题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B ...

  5. 算法导论-矩阵乘法-strassen算法

    目录 1.矩阵相乘的朴素算法 2.矩阵相乘的strassen算法 3.完整测试代码c++ 4.性能分析 5.参考资料 内容 1.矩阵相乘的朴素算法 T(n) = Θ(n3) 朴素矩阵相乘算法,思想明了 ...

  6. 整数快速乘法/快速幂+矩阵快速幂+Strassen算法

    快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩 ...

  7. 第四章 分治策略 4.2 矩阵乘法的Strassen算法

    package chap04_Divide_And_Conquer; import static org.junit.Assert.*; import java.util.Arrays; import ...

  8. LaTeX 算法代码排版 --latex2e范例总结

    LaTeX 写作: 算法代码排版 --latex2e范例总结 latex2e 宏包的使用范例: \usepackage[ruled]{algorithm2e}                     ...

  9. KMP算法代码

    以下是本人根据上一篇博客随笔http://www.cnblogs.com/jiayouwyhit/p/3251832.html,所写的KMP算法代码(暂未优化),个人认为在基于上一篇博客的基础上,代码 ...

随机推荐

  1. IT培训的背后,是“韭菜”的躺赚梦!

    作者:九歌 本文转自公众号:Hack 本文只谈"骗局",不谈其他,绝不引战,如有错误,希望指出我会及时改正 导语 为什么要写这篇文章呢,近些年培训这个话题也比较火,很多在看这篇文章 ...

  2. pattern space and hold space of sed

    Copied from: stackoverflow When sed reads a file line by line, the line that has been currently read ...

  3. C轮魔咒:智能硬件为什么融资难

    据相关媒体不完全统计,2015年完成融资的智能硬件公司集中在A轮和B轮,但能挺进C轮的少之又少.对智能硬件创业的年终盘点也显示,此前比较热门的手环.智能家居等主要单品在去年明显出现了回落.陷入C轮魔咒 ...

  4. 【问】:和=在map里面的区别

  5. Swift --闭包表达式与闭包(汇编分析)

    在Swift中,可以通过func定义一个函数,也可以通过闭包表达式定义一个函数! 一.闭包表达式 概念 闭包表达式与定义函数的语法相对比,有区别如下: 去除了func 去除函数名 返回值类型添加了关键 ...

  6. htm5新特性(转)

    转自:http://hyuhan.com/2017/07/06/... 今天来谈谈前端面试中基本上每次一面都会被问到的一个问题,那就是html5的新特性了.这个是学习前端必须掌握的基础知识. 新增的元 ...

  7. Unity 相机平移、旋转、缩放

    内容不多,一个脚本,直接上代码 using System.Collections; using System.Collections.Generic; using UnityEngine; publi ...

  8. webpack进阶(三)

    1)CommonsChunkPlugin已经从webpack4移除,所以在用webpack进行公共模块的拆分时,会报错 Cannot read property 'CommonsChunkPlugin ...

  9. svn更新时同步web服务器

    1.重中之重:第一次更新需要先把数据库先检索出来,执行脚本./post.commit #!/bin/sh export LANG=en_US.UTF-8 SVN=/usr/local/subversi ...

  10. js 随机产生100个0~1000之间的整数

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...