【C++】Strassen算法代码
本文仅代码,无理论解释
实话实说,我觉得这个算法在C系列的语言下,简直垃圾到爆炸……毕竟是一群完全不懂程序数学家对着纸弄出来的,看起来好像非常的有用,实际上耗时是非常爆炸的。
但是《算法导论》里有啊……然后上课又要求手写一个
于是我就手写了一个……我尽可能的减少使用的空间同时加快速度了,当 n = 512 的时候,内存使用量峰值没有超过 10mb,而且是通过递归实现 Strassen 算法
其中,in.txt 已经预先准备了 3000000 个范围在 0-100 随机数,避免程序在运算过程中爆 int(虽然完全可以取1000)
/**
* Created by Mauve on 3/29/2020.
* Copyright © 2020 Mauve, All Rights Reserved
*/
#include <bits/stdc++.h>
using namespace std;
/**
* 矩阵相乘
* 最终结果耗时结果保存至
* https://www.desmos.com/calculator/gl4tm5i1zu
*/
struct mat {
unsigned row, col;
mat(unsigned r, unsigned c) : row(r), col(c) {}
virtual int &pos_ref(unsigned i, unsigned j) = 0;
virtual int pos(unsigned i, unsigned j) const = 0;
};
struct base_mat;
struct sub_mat;
stack<sub_mat *> sub_data;
struct base_mat : mat {
int *data;
base_mat(unsigned r, unsigned c) : mat(r, c), data(new int[row * col]) {}
~base_mat() {
delete[] data;
}
inline int &pos_ref(unsigned i, unsigned j) override {
return *(data + i * col + j);
}
inline int pos(unsigned i, unsigned j) const override {
return *(data + i * col + j);
}
};
unsigned min_mul;
struct sub_mat : mat {
mat *a, *b;
bool is_add;
unsigned offset_ai, offset_aj, offset_bi, offset_bj;
explicit sub_mat(mat *data) : mat(data->row, data->col), a(data), b(nullptr),
is_add(false), offset_ai(0), offset_aj(0),
offset_bi(0), offset_bj(0) { sub_data.push(this); }
sub_mat(mat *data, bool of_i, bool of_j) : mat(data->row >> 1u, data->col >> 1u), a(data), b(nullptr),
is_add(false), offset_ai(of_i ? data->row >> 1u : 0),
offset_aj(of_j ? data->col >> 1u : 0),
offset_bi(0), offset_bj(0) { sub_data.push(this); }
inline int &pos_ref(unsigned i, unsigned j) override {
assert(b == nullptr);
return a->pos_ref(i + offset_ai, j + offset_aj);
}
inline int pos(unsigned i, unsigned j) const override {
if (b == nullptr)
return a->pos(i + offset_ai, j + offset_aj);
return a->pos(i + offset_ai, j + offset_aj) + (is_add ? 1 : -1) * b->pos(i + offset_bi, j + offset_bj);
}
inline sub_mat *operator+(sub_mat &other) {
auto res = new sub_mat(this);
res->b = &other;
res->is_add = true;
return res;
}
inline sub_mat *operator-(sub_mat &other) {
auto res = new sub_mat(this);
res->b = &other;
res->is_add = false;
return res;
}
mat *operator*(sub_mat &other) {
assert(col == other.row);
auto res = new base_mat(row, other.col);
if (col & 1u || row & 1u || col <= min_mul || row <= min_mul || other.col <= min_mul) {
memset(res->data, 0, sizeof(int) * res->row * res->col);
for (int k = 0; k < col; k++)
for (int i = 0; i < row; ++i)
for (int j = 0; j < other.col; ++j)
res->pos_ref(i, j) += pos(i, k) * other.pos(k, j);
} else {
size_t sub_data_size = sub_data.size();
#define a(i, j) (*new sub_mat(this, i == 2 , j == 2))
#define b(i, j) (*new sub_mat(&other, i == 2 , j == 2))
auto m1 = *(a(1, 1) + a(2, 2)) * *(b(1, 1) + b (2, 2));
auto m2 = *(a(2, 1) + a(2, 2)) * b(1, 1);
auto m3 = a(1, 1) * *(b(1, 2) - b(2, 2));
auto m4 = a(2, 2) * *(b(2, 1) - b(1, 1));
auto m5 = *(a(1, 1) + a(1, 2)) * b(2, 2);
auto m6 = *(a(2, 1) - a(1, 1)) * *(b(1, 1) + b(1, 2));
auto m7 = *(a(1, 2) - a(2, 2)) * *(b(2, 1) + b(2, 2));
#undef a
#undef b
unsigned half_row = row >> 1u, half_col = col >> 1u;
#define m(t) (m##t->pos(i, j))
// C11
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i, j) = m(1) + m(4) - m(5) + m(7);
// C12
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i, j + half_col) = m(3) + m(5);
// C21
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i + half_row, j) = m(2) + m(4);
// C22
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i + half_row, j + half_col) = m(1) - m(2) + m(3) + m(6);
#undef m
delete dynamic_cast<base_mat *>(m1);
delete dynamic_cast<base_mat *>(m2);
delete dynamic_cast<base_mat *>(m3);
delete dynamic_cast<base_mat *>(m4);
delete dynamic_cast<base_mat *>(m5);
delete dynamic_cast<base_mat *>(m6);
delete dynamic_cast<base_mat *>(m7);
while (sub_data.size() > sub_data_size) {
delete sub_data.top();
sub_data.pop();
}
}
return res;
}
};
unsigned N = 2;
void solve() {
cerr << "N = " << N << endl;
base_mat a(N, N), b(N, N);
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
cin >> a.pos_ref(i, j);
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
cin >> b.pos_ref(i, j);
for (int t = 1; t < min(10u, N); t += 3) {
auto x = new sub_mat(&a), y = new sub_mat(&b);
min_mul = t;
auto time_1 = clock();
auto z = *x * *y;
auto time_2 = clock();
cerr << "t = " << t << " time: " << double(time_2 - time_1) / CLOCKS_PER_SEC << endl;
delete dynamic_cast<base_mat *>(z);
while (!sub_data.empty()) {
delete sub_data.top();
sub_data.pop();
}
}
auto x = new sub_mat(&a), y = new sub_mat(&b);
min_mul = 10000;
auto time_1 = clock();
auto z = *x * *y;
auto time_2 = clock();
cerr << "tradition: " << double(time_2 - time_1) / CLOCKS_PER_SEC << endl;
delete dynamic_cast<base_mat *>(z);
while (!sub_data.empty()) {
delete sub_data.top();
sub_data.pop();
}
N *= 2;
if (N >= 1000) exit(0);
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
#ifdef ACM_LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
long long test_index_for_debug = 1;
char acm_local_for_debug;
while (cin >> acm_local_for_debug && acm_local_for_debug != '~') {
cin.putback(acm_local_for_debug);
if (test_index_for_debug > 20) {
throw runtime_error("Check the stdin!!!");
}
auto start_clock_for_debug = clock();
solve();
auto end_clock_for_debug = clock();
cout << "Test " << test_index_for_debug << " successful" << endl;
cerr << "Test " << test_index_for_debug++ << " Run Time: "
<< double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
cout << "--------------------------------------------------" << endl;
}
#else
solve();
#endif
return 0;
}
【C++】Strassen算法代码的更多相关文章
- 【算法导论C++代码】Strassen算法
简单方阵矩乘法 SQUARE-MATRIX-MULTIPLY(A,B) n = A.rows let C be a new n*n natrix to n to n cij = to n cij=ci ...
- Conquer and Divide经典例子之Strassen算法解决大型矩阵的相乘
在通过汉诺塔问题理解递归的精髓中我讲解了怎么把一个复杂的问题一步步recursively划分了成简单显而易见的小问题.其实这个解决问题的思路就是算法中常用的divide and conquer, 这篇 ...
- Strassen算法
如题,该算法是来自德国的牛逼的数学家strassen搞出来的,因为把n*n矩阵之间的乘法复杂度降低到n^(lg7)(lg的底是2),一开始想当然地认为朴素的做法是n^3,哪里还能有复杂度更低的做法,但 ...
- 4-2.矩阵乘法的Strassen算法详解
题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B ...
- 算法导论-矩阵乘法-strassen算法
目录 1.矩阵相乘的朴素算法 2.矩阵相乘的strassen算法 3.完整测试代码c++ 4.性能分析 5.参考资料 内容 1.矩阵相乘的朴素算法 T(n) = Θ(n3) 朴素矩阵相乘算法,思想明了 ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- 第四章 分治策略 4.2 矩阵乘法的Strassen算法
package chap04_Divide_And_Conquer; import static org.junit.Assert.*; import java.util.Arrays; import ...
- LaTeX 算法代码排版 --latex2e范例总结
LaTeX 写作: 算法代码排版 --latex2e范例总结 latex2e 宏包的使用范例: \usepackage[ruled]{algorithm2e} ...
- KMP算法代码
以下是本人根据上一篇博客随笔http://www.cnblogs.com/jiayouwyhit/p/3251832.html,所写的KMP算法代码(暂未优化),个人认为在基于上一篇博客的基础上,代码 ...
随机推荐
- 二手iPhone,为什么没有火?
据相关媒体报道,日前苹果准备向印度市场销售二手iPhone,以提高自己在这个市场内的竞争力,但却遭遇到了强烈的反对,首先是印度本土手机制造商担心二手iPhone会冲击他们的销售,让其本就微薄的利润更加 ...
- dagger2的Qualifier与Scope
Qualifier即Named 当module的@Provides提供相同变量的不同属性时:用于区分把哪一个初始化 Module 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
- OO第四单元总结暨学期总结
一.第四单元作业架构设计 我们第四单元围绕UML图展开,在第四单元开始之前,本来以为我们的工作是学习如何使用UML工具,开始后才意识到我们要做的是解析UML类图.顺序图和状态图.当然,让我们解析的只是 ...
- 4——PHP比较&&复制运算符
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- linux tc流量控制
tc流量控制 项目背景 vintage3.0接口lookupforupdage增加一个策略,当带宽流量tx或rx超过40%,75%随机返回304:超过60%,此接口均返回304 为了对测试机器进行流量 ...
- IdentityServer4迁移至3.x版本注意问题详解
前言 之前有一位购买我课程的童鞋利用最新的IdentityServer4版本即对应.NET Core 3.x,发布到生产环境在学习,结果出了一些问题,此前我并未过多关注IdentityServer4升 ...
- Java入门教程十三(多线程)
线程的概念 单纯种以一个任务完成以后再进行下一个任务的模式进行,这样下一个任务的开始必须等待前一个任务的结束,只有一个任务完成后才能进行下一个任务.Java 语言提供了并发机制,允许开发人员在程序中执 ...
- 那些年,我的前端/Java后端书单
全文为这些年,我曾阅读.深入理解过(或正在阅读学习.即将阅读)的一些优秀经典前端/Java后端书籍.全文为纯原创,且将持续更新,未经许可,不得进行转载.当然,如果您喜欢这篇文章,可以动手点点赞或者收藏 ...
- 今夜我懂了Lambda表达式_解析
现在时间午夜十一点~ 此刻的我血脉喷张,异常兴奋:因为专注得学习了一把java,在深入集合的过程中发现好多套路配合Lambda表达式真的是搜椅子,so开了个分支,决定从"只认得", ...
- 读《Java并发编程的艺术》学习笔记(一)
接下来一个系列,是关于<Java并发编程的艺术>这本书的读书笔记以及相关知识点,主要是为了方便日后多次复习和防止忘记.废话不多说,直接步入主题: 第1章 并发编程的挑战 并发编程的目的是 ...