【C++】Strassen算法代码
本文仅代码,无理论解释
实话实说,我觉得这个算法在C系列的语言下,简直垃圾到爆炸……毕竟是一群完全不懂程序数学家对着纸弄出来的,看起来好像非常的有用,实际上耗时是非常爆炸的。
但是《算法导论》里有啊……然后上课又要求手写一个
于是我就手写了一个……我尽可能的减少使用的空间同时加快速度了,当 n = 512 的时候,内存使用量峰值没有超过 10mb,而且是通过递归实现 Strassen 算法
其中,in.txt 已经预先准备了 3000000 个范围在 0-100 随机数,避免程序在运算过程中爆 int(虽然完全可以取1000)
/**
* Created by Mauve on 3/29/2020.
* Copyright © 2020 Mauve, All Rights Reserved
*/
#include <bits/stdc++.h>
using namespace std;
/**
* 矩阵相乘
* 最终结果耗时结果保存至
* https://www.desmos.com/calculator/gl4tm5i1zu
*/
struct mat {
unsigned row, col;
mat(unsigned r, unsigned c) : row(r), col(c) {}
virtual int &pos_ref(unsigned i, unsigned j) = 0;
virtual int pos(unsigned i, unsigned j) const = 0;
};
struct base_mat;
struct sub_mat;
stack<sub_mat *> sub_data;
struct base_mat : mat {
int *data;
base_mat(unsigned r, unsigned c) : mat(r, c), data(new int[row * col]) {}
~base_mat() {
delete[] data;
}
inline int &pos_ref(unsigned i, unsigned j) override {
return *(data + i * col + j);
}
inline int pos(unsigned i, unsigned j) const override {
return *(data + i * col + j);
}
};
unsigned min_mul;
struct sub_mat : mat {
mat *a, *b;
bool is_add;
unsigned offset_ai, offset_aj, offset_bi, offset_bj;
explicit sub_mat(mat *data) : mat(data->row, data->col), a(data), b(nullptr),
is_add(false), offset_ai(0), offset_aj(0),
offset_bi(0), offset_bj(0) { sub_data.push(this); }
sub_mat(mat *data, bool of_i, bool of_j) : mat(data->row >> 1u, data->col >> 1u), a(data), b(nullptr),
is_add(false), offset_ai(of_i ? data->row >> 1u : 0),
offset_aj(of_j ? data->col >> 1u : 0),
offset_bi(0), offset_bj(0) { sub_data.push(this); }
inline int &pos_ref(unsigned i, unsigned j) override {
assert(b == nullptr);
return a->pos_ref(i + offset_ai, j + offset_aj);
}
inline int pos(unsigned i, unsigned j) const override {
if (b == nullptr)
return a->pos(i + offset_ai, j + offset_aj);
return a->pos(i + offset_ai, j + offset_aj) + (is_add ? 1 : -1) * b->pos(i + offset_bi, j + offset_bj);
}
inline sub_mat *operator+(sub_mat &other) {
auto res = new sub_mat(this);
res->b = &other;
res->is_add = true;
return res;
}
inline sub_mat *operator-(sub_mat &other) {
auto res = new sub_mat(this);
res->b = &other;
res->is_add = false;
return res;
}
mat *operator*(sub_mat &other) {
assert(col == other.row);
auto res = new base_mat(row, other.col);
if (col & 1u || row & 1u || col <= min_mul || row <= min_mul || other.col <= min_mul) {
memset(res->data, 0, sizeof(int) * res->row * res->col);
for (int k = 0; k < col; k++)
for (int i = 0; i < row; ++i)
for (int j = 0; j < other.col; ++j)
res->pos_ref(i, j) += pos(i, k) * other.pos(k, j);
} else {
size_t sub_data_size = sub_data.size();
#define a(i, j) (*new sub_mat(this, i == 2 , j == 2))
#define b(i, j) (*new sub_mat(&other, i == 2 , j == 2))
auto m1 = *(a(1, 1) + a(2, 2)) * *(b(1, 1) + b (2, 2));
auto m2 = *(a(2, 1) + a(2, 2)) * b(1, 1);
auto m3 = a(1, 1) * *(b(1, 2) - b(2, 2));
auto m4 = a(2, 2) * *(b(2, 1) - b(1, 1));
auto m5 = *(a(1, 1) + a(1, 2)) * b(2, 2);
auto m6 = *(a(2, 1) - a(1, 1)) * *(b(1, 1) + b(1, 2));
auto m7 = *(a(1, 2) - a(2, 2)) * *(b(2, 1) + b(2, 2));
#undef a
#undef b
unsigned half_row = row >> 1u, half_col = col >> 1u;
#define m(t) (m##t->pos(i, j))
// C11
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i, j) = m(1) + m(4) - m(5) + m(7);
// C12
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i, j + half_col) = m(3) + m(5);
// C21
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i + half_row, j) = m(2) + m(4);
// C22
for (unsigned i = 0; i < half_row; ++i)
for (unsigned j = 0; j < half_col; ++j)
res->pos_ref(i + half_row, j + half_col) = m(1) - m(2) + m(3) + m(6);
#undef m
delete dynamic_cast<base_mat *>(m1);
delete dynamic_cast<base_mat *>(m2);
delete dynamic_cast<base_mat *>(m3);
delete dynamic_cast<base_mat *>(m4);
delete dynamic_cast<base_mat *>(m5);
delete dynamic_cast<base_mat *>(m6);
delete dynamic_cast<base_mat *>(m7);
while (sub_data.size() > sub_data_size) {
delete sub_data.top();
sub_data.pop();
}
}
return res;
}
};
unsigned N = 2;
void solve() {
cerr << "N = " << N << endl;
base_mat a(N, N), b(N, N);
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
cin >> a.pos_ref(i, j);
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
cin >> b.pos_ref(i, j);
for (int t = 1; t < min(10u, N); t += 3) {
auto x = new sub_mat(&a), y = new sub_mat(&b);
min_mul = t;
auto time_1 = clock();
auto z = *x * *y;
auto time_2 = clock();
cerr << "t = " << t << " time: " << double(time_2 - time_1) / CLOCKS_PER_SEC << endl;
delete dynamic_cast<base_mat *>(z);
while (!sub_data.empty()) {
delete sub_data.top();
sub_data.pop();
}
}
auto x = new sub_mat(&a), y = new sub_mat(&b);
min_mul = 10000;
auto time_1 = clock();
auto z = *x * *y;
auto time_2 = clock();
cerr << "tradition: " << double(time_2 - time_1) / CLOCKS_PER_SEC << endl;
delete dynamic_cast<base_mat *>(z);
while (!sub_data.empty()) {
delete sub_data.top();
sub_data.pop();
}
N *= 2;
if (N >= 1000) exit(0);
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
#ifdef ACM_LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
long long test_index_for_debug = 1;
char acm_local_for_debug;
while (cin >> acm_local_for_debug && acm_local_for_debug != '~') {
cin.putback(acm_local_for_debug);
if (test_index_for_debug > 20) {
throw runtime_error("Check the stdin!!!");
}
auto start_clock_for_debug = clock();
solve();
auto end_clock_for_debug = clock();
cout << "Test " << test_index_for_debug << " successful" << endl;
cerr << "Test " << test_index_for_debug++ << " Run Time: "
<< double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
cout << "--------------------------------------------------" << endl;
}
#else
solve();
#endif
return 0;
}
【C++】Strassen算法代码的更多相关文章
- 【算法导论C++代码】Strassen算法
简单方阵矩乘法 SQUARE-MATRIX-MULTIPLY(A,B) n = A.rows let C be a new n*n natrix to n to n cij = to n cij=ci ...
- Conquer and Divide经典例子之Strassen算法解决大型矩阵的相乘
在通过汉诺塔问题理解递归的精髓中我讲解了怎么把一个复杂的问题一步步recursively划分了成简单显而易见的小问题.其实这个解决问题的思路就是算法中常用的divide and conquer, 这篇 ...
- Strassen算法
如题,该算法是来自德国的牛逼的数学家strassen搞出来的,因为把n*n矩阵之间的乘法复杂度降低到n^(lg7)(lg的底是2),一开始想当然地认为朴素的做法是n^3,哪里还能有复杂度更低的做法,但 ...
- 4-2.矩阵乘法的Strassen算法详解
题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B ...
- 算法导论-矩阵乘法-strassen算法
目录 1.矩阵相乘的朴素算法 2.矩阵相乘的strassen算法 3.完整测试代码c++ 4.性能分析 5.参考资料 内容 1.矩阵相乘的朴素算法 T(n) = Θ(n3) 朴素矩阵相乘算法,思想明了 ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- 第四章 分治策略 4.2 矩阵乘法的Strassen算法
package chap04_Divide_And_Conquer; import static org.junit.Assert.*; import java.util.Arrays; import ...
- LaTeX 算法代码排版 --latex2e范例总结
LaTeX 写作: 算法代码排版 --latex2e范例总结 latex2e 宏包的使用范例: \usepackage[ruled]{algorithm2e} ...
- KMP算法代码
以下是本人根据上一篇博客随笔http://www.cnblogs.com/jiayouwyhit/p/3251832.html,所写的KMP算法代码(暂未优化),个人认为在基于上一篇博客的基础上,代码 ...
随机推荐
- 网购分期不还 N种恶果等着你
N种恶果等着你" title="网购分期不还 N种恶果等着你"> 网购市场狂飙突进的发展,让每个人都享受到随时随地购物的乐趣,也在很大程度上推动商品之间的流通.目前 ...
- HAProxy此例简单介绍基于docker的HAProxy反代
HAProxy拓展连接 此例简单介绍基于Docker的HAProxy反代 反代: 1.获取haproxy镜像 docker pull haproxy 2.写配置文件haproxy.cfg 1 glo ...
- Kubelet
Kubelet 相关博客 Kubelet组件深度解析 Kubelet组件解析 Kubelet运行机制分析 Kubelet与apiserver通信 ___ Kubelet组件运行在Node节点上,维持运 ...
- EventEmitter:从命令式 JavaScript class 到声明函数式的华丽转身
新书终于截稿,今天稍有空闲,为大家奉献一篇关于 JavaScript 语言风格的文章,主角是函数声明式. 灵活的 JavaScript 及其 multiparadigm 相信"函数式&quo ...
- JZOJ 3929. 【NOIP2014模拟11.6】创世纪
3929. [NOIP2014模拟11.6]创世纪 (Standard IO) Time Limits: 1000 ms Memory Limits: 65536 KB Description 上帝手 ...
- 复习笔记——1. C语言基础知识回顾
1. 数据类型 1.1 基本数据类型 整型:int, long,unsigned int,unsigned long,long long-- 字符型:char 浮点型:float, double-- ...
- SpringBoot突报java.lang.NoSuchFieldError分析
SpringBoot项目,引了一个内部的工具包,竟然导致启动失败,报找不到freemarker Configuration类的一个属性,网上的解法都大同小异,最终用了自己的办法解决,花点时间记录下来, ...
- 代号为 Kyria 的 Manjaro Linux 19.0 系统正式发布
Xfce版本仍然是主打,此版本Xfce更新到4.14,并且主要致力于在桌面和窗口管理器上完善用户体验. KDE版本提供了功能强大.成熟且丰富的Plasma 5.17桌面环境,此版本进行了完全重新设计. ...
- MySQL 【优化宝典】
概述 为什么要优化 系统的吞吐量瓶颈往往出现在数据库的访问速度上 随着应用程序的运行,数据库的中的数据会越来越多,处理时间会相应变慢 数据是存放在磁盘上的,读写速度无法和内存相比 如何优化 设计数据库 ...
- 原来rollup这么简单之 rollup.generate + rollup.write篇
大家好,我是小雨小雨,致力于分享有趣的.实用的技术文章. 内容分为翻译和原创,如果有问题,欢迎随时评论或私信,希望和大家一起进步. 分享不易,希望能够得到大家的支持和关注. 计划 rollup系列打算 ...