使用IDEA远程向伪分布式搭建的Hadoop提交MapReduce作业
环境
- VirtualBox 6.1
- IntelliJ IDEA 2020.1.1
- Ubuntu-18.04.4-live-server-amd64
- jdk-8u251-linux-x64
- hadoop-2.7.7
安装伪分布式Hadoop
安装伪分布式参考:Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0(2.7.1)/Ubuntu14.04(16.04)
这里就不再累述,注意需要安装yarn。
还就是我使用的是仅主机网络模式。
启动成功后,使用jps
,显示应该有以下几项:
修改配置
首先使用ifconfig
查看本机IP,我这里是192.168.56.101
,下面将使用该IP为例进行展示。
修改core-site.xml
,将localhost
改为服务器IP
<property>
<name>fs.defaultFS</name>
<value>hdfs://192.168.56.101:9000</value>
</property>
修改mapred-site.xml
,添加mapreduce.jobhistory.address
<property>
<name>mapreduce.jobhistory.address</name>
<value>192.168.56.101:10020</value>
</property>
不添加这项,会报如下错
[main] INFO org.apache.hadoop.ipc.Client - Retrying connect to server: 0.0.0.0/0.0.0.0:10020. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS)
修改yarn-site.xml
,添加如下项
<property>
<name>yarn.resourcemanager.address</name>
<value>192.168.56.101:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>192.168.56.101:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>192.168.56.101:8031</value>
</property>
如果不添加,将会报错
INFO ipc.Client: Retrying connect to server: 0.0.0.0/0.0.0.0:8032. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1 SECONDS)
配置完成后,需要重启dfs
、yarn
和historyserver
。
配置Windows的Hadoop运行环境
首先把Linux中的hadoop-2.7.7.tar.gz
解压到Windows
的一个目录,本文中是D:\ProgramData\hadoop
然后配置环境变量:
HADOOP_HOME=D:\ProgramData\hadoop
HADOOP_BIN_PATH=%HADOOP_HOME%\bin
HADOOP_PREFIX=D:\ProgramData\hadoop
另外,PATH变量在最后追加;%HADOOP_HOME%\bin
然后去下载winutils
,下载地址在https://github.com/cdarlint/winutils,找到对应版本下载,这里下载的2.7.7
版本。
将winutils.exe
复制到$HADOOP_HOME\bin
目录,将hadoop.dll
复制到C:\Windows\System32
目录。
编写WordCount
首先创建数据文件wc.txt
hello world
dog fish
hadoop
spark
hello world
dog fish
hadoop
spark
hello world
dog fish
hadoop
spark
然后移动到Linux中去,在使用hdfs dfs -put /path/wc.txt ./input
将数据文件放入到dfs中
然后使用IDEA新建maven项目,修改pom.xml
文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>WordCount</artifactId>
<version>1.0-SNAPSHOT</version>
<repositories>
<repository>
<id>aliyun</id>
<name>aliyun</name>
<url>https://maven.aliyun.com/repository/central/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.7</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.7.7</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
<dependency>
<groupId>commons-cli</groupId>
<artifactId>commons-cli</artifactId>
<version>1.2</version>
</dependency>
<dependency>
<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>
<version>1.1.1</version>
</dependency>
</dependencies>
<build>
<finalName>${project.artifactId}</finalName>
</build>
</project>
接着就是编写WordCount
程序,这里我参考的是
https://www.cnblogs.com/frankdeng/p/9256254.html
然后修改一下WordcountDriver.
package cabbage;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* 相当于一个yarn集群的客户端,
* 需要在此封装我们的mr程序相关运行参数,指定jar包
* 最后提交给yarn
*/
public class WordcountDriver {
/**
* 删除指定目录
*
* @param conf
* @param dirPath
* @throws IOException
*/
private static void deleteDir(Configuration conf, String dirPath) throws IOException {
FileSystem fs = FileSystem.get(conf);
Path targetPath = new Path(dirPath);
if (fs.exists(targetPath)) {
boolean delResult = fs.delete(targetPath, true);
if (delResult) {
System.out.println(targetPath + " has been deleted sucessfullly.");
} else {
System.out.println(targetPath + " deletion failed.");
}
}
}
public static void main(String[] args) throws Exception {
System.setProperty("HADOOP_USER_NAME", "hadoop");
// 1 获取配置信息,或者job对象实例
Configuration configuration = new Configuration();
System.setProperty("hadoop.home.dir", "D:\\ProgramData\\hadoop");
configuration.set("mapreduce.framework.name", "yarn");
configuration.set("fs.default.name", "hdfs://192.168.56.101:9000");
configuration.set("mapreduce.app-submission.cross-platform", "true");//跨平台提交
configuration.set("mapred.jar","D:\\Work\\Study\\Hadoop\\WordCount\\target\\WordCount.jar");
// 8 配置提交到yarn上运行,windows和Linux变量不一致
// configuration.set("mapreduce.framework.name", "yarn");
// configuration.set("yarn.resourcemanager.hostname", "node22");
//先删除output目录
deleteDir(configuration, args[args.length - 1]);
Job job = Job.getInstance(configuration);
// 6 指定本程序的jar包所在的本地路径
// job.setJar("/home/admin/wc.jar");
job.setJarByClass(WordcountDriver.class);
// 2 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(WordcountMapper.class);
job.setCombinerClass(WordcountReducer.class);
job.setReducerClass(WordcountReducer.class);
// 3 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 4 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 5 指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
// job.submit();
boolean result = job.waitForCompletion(true);
System.exit(result?0:1);
}
}
关键代码
System.setProperty("HADOOP_USER_NAME", "hadoop");
如果不添加这行,会导致权限报错
org.apache.hadoop.ipc.RemoteException: Permission denied: user=administration, access=WRITE, inode="/":root:supergroup:drwxr-xr-x
如果修改了还是报错,可以考虑将文件权限修改777
这里我主要参考一下几篇文章
https://www.cnblogs.com/acmy/archive/2011/10/28/2227901.html
https://blog.csdn.net/jzy3711/article/details/85003606
System.setProperty("hadoop.home.dir", "D:\\ProgramData\\hadoop");
configuration.set("mapreduce.framework.name", "yarn");
configuration.set("fs.default.name", "hdfs://192.168.56.101:9000");
configuration.set("mapreduce.app-submission.cross-platform", "true");//跨平台提交
configuration.set("mapred.jar","D:\\Work\\Study\\Hadoop\\WordCount\\target\\WordCount.jar");
如果不添加这行会报错
Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class cabbage.WordcountMapper not found
这里我主要参考了
https://blog.csdn.net/u011654631/article/details/70037219
//先删除output目录
deleteDir(configuration, args[args.length - 1]);
output每次运行时候不会覆盖,如果不删除会报错,这里应该都知道。
添加依赖
然后添加依赖的Libary引用,项目上右击 -> Open Module Settings
或按F12,打开模块属性
然后点击Dependencies
->右边的加号->Libray
接着把$HADOOP_HOME
下的对应包全导进来
然后再导入$HADOOP_HOME\share\hadoop\tools\lib
然后使用maven的package
打包jar包
添加resources
在resources
中新建log4j.properties
,添加如下内容
log4j.rootLogger=INFO, stdout
#log4j.logger.org.springframework=INFO
#log4j.logger.org.apache.activemq=INFO
#log4j.logger.org.apache.activemq.spring=WARN
#log4j.logger.org.apache.activemq.store.journal=INFO
#log4j.logger.org.activeio.journal=INFO
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} | %-5.5p | %-16.16t | %-32.32c{1} | %-32.32C %4L | %m%n
然后再把Linux里面的core-site.xml
、hdfs-site.xml
、mapred-site.xml
和yarn-site.xml
移动过来,最后的项目结构如下图
配置IDEA
上面配置完了,就可以设置运行参数了
注意两个地方
Program aguments,指定输入文件和输出文件夹,注意是
hdsf://ip:9000/user/hadoop/xxx
Working Directory,即工作目录,指定为$HADOOP_HOME所在目录
运行
点击运行即可,如果报错说缺少依赖,比如我就报错缺少slf4j-log
这个包,然后就自己添加到依赖里面就行了。
运行完成后IDEA显示如下图:
然后再output文件中看看输出结果,在Linux里面输入hdfs dfs -cat ./output/*
,显示如下结果,就正确了。
如果有什么问题,可以再评论区提出来,一起讨论;)。
参考
- http://dblab.xmu.edu.cn/blog/install-hadoop/
- https://blog.csdn.net/u011654631/article/details/70037219
- https://www.cnblogs.com/yjmyzz/p/how-to-remote-debug-hadoop-with-eclipse-and-intellij-idea.html
- https://www.cnblogs.com/frankdeng/p/9256254.html
- https://www.cnblogs.com/acmy/archive/2011/10/28/2227901.html
- https://blog.csdn.net/djw745917/article/details/88703888
- https://www.jianshu.com/p/7a1f131469f5
使用IDEA远程向伪分布式搭建的Hadoop提交MapReduce作业的更多相关文章
- Hadoop简介与伪分布式搭建—DAY01
一. Hadoop的一些相关概念及思想 1.hadoop的核心组成: (1)hdfs分布式文件系统 (2)mapreduce 分布式批处理运算框架 (3)yarn 分布式资源调度系统 2.hadoo ...
- 超详细解说Hadoop伪分布式搭建--实战验证【转】
超详细解说Hadoop伪分布式搭建 原文http://www.tuicool.com/articles/NBvMv2原原文 http://wojiaobaoshanyinong.iteye.com/b ...
- 2.hadoop基本配置,本地模式,伪分布式搭建
2. Hadoop三种集群方式 1. 三种集群方式 本地模式 hdfs dfs -ls / 不需要启动任何进程 伪分布式 所有进程跑在一个机器上 完全分布式 每个机器运行不同的进程 2. 服务器基本配 ...
- spark1.6.0伪分布式搭建
环境: hadoop2.6.0 jdk1.8 ubuntu 14.04 64位 1 安装scala环境 版本是scala-2.10.6,官网下载地址http://www.scala-lang.org/ ...
- [b0006] Spark 2.0.1 伪分布式搭建练手
环境: 已经安装好: hadoop 2.6.4 yarn 参考: [b0001] 伪分布式 hadoop 2.6.4 准备: spark-2.0.1-bin-hadoop2.6.tgz 下载地址: ...
- bayaim_hadoop1_2.2.0伪分布式搭建
------------------bayaim_hadoop1_2.2.0伪分布式搭建_2018年11月06日09:21:46--------------------------------- 1. ...
- hadoop2.8 集群 1 (伪分布式搭建)
简介: 关于完整分布式请参考: hadoop2.8 ha 集群搭建 [七台机器的集群] Hadoop:(hadoop2.8) Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户 ...
- 伪分布式下的hadoop简单配置
今天大概尝试了一下伪分布式下的hadoop部署,简单的来总结一下 首先我们需要下载hadoop的压缩包文件:http://hadoop.apache.org/releases.html这里是hadoo ...
- 云计算课程实验之安装Hadoop及配置伪分布式模式的Hadoop
一.实验目的 1. 掌握Linux虚拟机的安装方法. 2. 掌握Hadoop的伪分布式安装方法. 二.实验内容 (一)Linux基本操作命令 Linux常用基本命令包括: ls,cd,mkdir,rm ...
随机推荐
- 新增记录txt文档
StringBuilder s = new StringBuilder(); s.Append("[" + dt.Rows[i]["Store"].Conver ...
- Linux-监控与安全运维之zabbix
zabbix: Zabbix是一个开源分布式监控平台,包含诸多监控功能,用于构建一个符合企业级的监控解决方案.软件由开源社区提供开发和维护,遵循GPL协议,可以自由传播和使用,但开发团队提供收费的技术 ...
- [WPF] 考古Expression Web:微软当年最漂亮的WPF软件
1. 什么是Expression Web Expression Studio是微软在2007年推出的一套针对设计师的套件,其中包含专业的设计工具和新技术,可以弹性且自由地将设计方案转为实际--无论设计 ...
- tp3.2的__construct和_initialize方法
在tp3.2框架里面,有一个php自带的__construct()构造函数和tp3自带的构造函数_initialize()的实行顺序是先实行 php自带的__construct()构造函数 再实行 t ...
- 2019-2020-1 20199308《Linux内核原理与分析》第四周作业
<Linux内核分析> 第三章 MenuOS的构造 3.1 Linux内核源代码简介 操作系统的"两把宝剑" 中断上下文:保存现场和恢复现场 进程上下文 目录结构 ar ...
- Apache多处理模块
介绍 Apache HTTP 服务器被设计为一个功能强大,并且灵活的 web 服务器, 可以在很多平台与环境中工作.不同平台和不同的环境往往需要不同 的特性,或可能以不同的方式实现相同的特性最有效率. ...
- Spring boot自定义parent POM
文章目录 概述 不使用Parent POM来引入Spring boot 覆盖依赖项版本 概述 在之前的Spring Boot例子中,我们都会用到这样的parent POM. <parent> ...
- 也许你对 Fetch 了解得不是那么多(下)
上文链接:也许你对 Fetch 了解得不是那么多(上) 编者按:除创宇前端与作者博客外,本文还在语雀发布. 编者还要按:作者也在掘金哦,欢迎关注:@GoDotDotDot Fetch 与 XHR 比较 ...
- IT成长中的龟兔赛跑
IT成长中的龟兔赛跑 相信"龟兔赛跑"的故事大家都听过吧,那就让咱给各位看官讲讲我看到的一些事情吧. 最近看到很多文章总是叹息网管如何,起得比鸡早,睡得比狗晚,吃得比猪差 ...
- Clickhouse 时区转换(下)
Clickhouse 时区转换续—时区参数转换 天天加班,时间不够,主要还是我太懒,流汗,,,,,,另外如果这篇学习笔记超过100阅读量并有评论,我可能半夜也会爬起来更新的. 相信大家看我之前记录的这 ...