并发系列64章(TPL 数据流)第七章
前言
什么是TPL?全称:transmission control protocol
传输层对应于OSI七层参考模型的传输层,它提供两种端到端的通信服务。
然后思维方式回到为什么有这个TPL 数据流上。
TPL 数据流库向具有高吞吐量和低滞后时间的占用大量 CPU 和 I/O 操作的应用程序的并行化和消息传递提供了基础。 它还能显式控制缓存数据的方式以及在系统中移动的方式。
为了更好地了解数据流编程模型,请考虑一个以异步方式从磁盘加载图像并创建复合图像的应用程序。
传统编程模型通常需要使用回调和同步对象(例如锁)来协调任务和访问共享数据。
通过使用数据流编程模型,您可以从磁盘读取时创建处理图像的数据流对象。
在数据流模型下,您可以声明当数据可用时的处理方式,以及数据之间的所有依赖项。 由于运行时管理数据之间的依赖项,因此通常可以避免这种要求来同步访问共享数据。
此外,因为运行时计划基于数据的异步到达,所以数据流可以通过有效管理基础线程提高响应能力和吞吐量。
分析一下,这段话。
TPL 数据流库向具有高吞吐量和低滞后时间的占用大量 CPU 和 I/O 操作的应用程序的并行化和消息传递提供了基础。
解决一个问题就是:
高吞吐量和低滞后时间的占用大量 CPU 和 I/O 操作的应用程序。
如何解决的:
应用程序的并行化和消息传递提供了基础。通过并行解决的。
例子:
异步方式从磁盘加载图像并创建复合图像的应用程序
遇到的问题:
协调任务和访问共享数据 需要 回调和同步。
就是说共享数据的时候,需要同步。
总结问题:共享数据代价大。
如果解决的:
由于运行时管理数据之间的依赖项,因此通常可以避免这种要求来同步访问共享数据。
总结:解决了依赖,那么不需要同步了。
综上所述:TPL 数据流库的作用在于解决数据之间的依赖,避免同步访问共享数据。
正文
链接数据流块
var multiplyBlock = new TransformBlock<int, int>(item=>item*2);
var subtractBlock = new TransformBlock<int, int>(item=> { Console.WriteLine(item); return item - 2; });
multiplyBlock.LinkTo(subtractBlock);
multiplyBlock.Post(10);
Console.ReadKey();
打印出来就是20了。
传递出错信息
需要处理数据流网格中发生的错误
如果数据流块的委托抛出异常,这个块就是故障块。一但数据流进入了故障状态,就会删除所有数据(停止接收新的数据)。
什么意思呢?
static async void datalfow()
{
var multiplyBlock = new TransformBlock<int, int>(item =>
{
if (item == 1)
{
throw new InvalidOperationException("not good");
}
return item * 2;
}
);
var subtractBlock = new TransformBlock<int, int>(item => { Console.WriteLine(item); return item - 2; });
multiplyBlock.LinkTo(subtractBlock, new DataflowLinkOptions { PropagateCompletion = true});
try
{
multiplyBlock.Post(10);
multiplyBlock.Post(1);
multiplyBlock.Post(20);
await subtractBlock.Completion;
}
catch(AggregateException e)
{
Console.WriteLine(e);
}
}
结果是:

有没有发现multiplyBlock.Post(20);,没有运行?
因为一但一个有错误,那么就会终止,并销毁数据。
这里和上面不同的是,new DataflowLinkOptions { PropagateCompletion = true}。
多个这个东西,那么这个有啥用呢?
因为我们链接块的时候,这个库不会帮助我们传递块运行的状态,如果不传递的话,下一个块是不晓得上一个块到底啥情况,这样不利于我们捕获异常。
而这种传递做法,我们只要在最后的处理模块,统一处理错误就可以。
断开链接
这个我从来就没有遇到过。是这样子的,适用一种这样的场景。
比如说有一个数据块需要动态替换,需要断开现有的模块然后接上新的数据块。
static async void datalfow()
{
var multiplyBlock = new TransformBlock<int, int>(item =>
{
if (item == 1)
{
throw new InvalidOperationException("not good");
}
Console.WriteLine("item:" + item);
return item * 2;
}
);
var subtractBlock = new TransformBlock<int, int>(item => { Console.WriteLine(item-2); return item - 2; });
var appendBlock = new TransformBlock<int, int>(item => { Console.WriteLine(item+2); return item + 2; });
var link=multiplyBlock.LinkTo(subtractBlock, new DataflowLinkOptions { PropagateCompletion = true});
try
{
for (int i = 0; i < 20; i++)
{
multiplyBlock.Post(2);
if (i==10)
{
await Task.Delay(1000);
link.Dispose();
multiplyBlock.LinkTo(appendBlock, new DataflowLinkOptions { PropagateCompletion = true });
}
}
await subtractBlock.Completion;
}
catch(AggregateException e)
{
Console.WriteLine(e);
}
}
结果是:

值得注意的是,我这里了一个:
await Task.Delay(1000);
这是模拟动态运行的时候,因为当我post结束的时候,数据块链接还没开始传递。
注:
除非保证链接是空闲的情况下,否则在断开数据块的链接时候会出现竞争。
竞争的是先断开还是先传递。
但是这种竞争是安全的,他会保证要不断开,要不传递带下一个数据块。
限制流量
前面我们都是线性链接,就是一条路走到黑。但是呢,有时候出现分叉的时候,那么该如何均衡呢?
之所以考虑均衡,是因为比如传递到下一个数据块的时候,是会有缓存的。如果有条分叉,一条分叉无限去缓存,那另外一条可能吃不上饭了。
static async void datalfow()
{
var multiplyBlock = new TransformBlock<int, int>(item =>
{
if (item == 1)
{
throw new InvalidOperationException("not good");
}
Console.WriteLine("item:" + item);
return item * 2;
}
);
var subtractBlock = new TransformBlock<int, int>(item => { Console.WriteLine(item-2); return item - 2; });
var appendBlock = new TransformBlock<int, int>(item => { Console.WriteLine(item+2); return item + 2; });
multiplyBlock.LinkTo(subtractBlock, new DataflowLinkOptions { PropagateCompletion = true});
multiplyBlock.LinkTo(appendBlock, new DataflowLinkOptions { PropagateCompletion = true });
try
{
for (int i = 0; i < 100; i++)
{
multiplyBlock.Post(2);
}
await subtractBlock.Completion;
}
catch(AggregateException e)
{
Console.WriteLine(e);
}
}

这种就属于没吃上饭的情况。
static async void datalfow()
{
var multiplyBlock = new TransformBlock<int, int>(item =>
{
if (item == 1)
{
throw new InvalidOperationException("not good");
}
Console.WriteLine("item:" + item);
return item * 2;
}
);
var options = new DataflowBlockOptions {BoundedCapacity=1 };
var subtractBlock = new TransformBlock<int, int>(item => {
return item - 2;
}, options);
var appendBlock = new TransformBlock<int, int>(item => { Console.WriteLine(item+2); return item + 2; }, options);
multiplyBlock.LinkTo(subtractBlock, new DataflowLinkOptions { PropagateCompletion = true});
multiplyBlock.LinkTo(appendBlock, new DataflowLinkOptions { PropagateCompletion = true });
try
{
for (int i = 0; i < 100; i++)
{
multiplyBlock.Post(2);
}
await subtractBlock.Completion;
}
catch(AggregateException e)
{
Console.WriteLine(e);
}
}
限制缓存为1,那么这时候我们就会相互切换。
下一章
整理:
1.数据流块的并行处理
2.创建自定义数据流块
参考
https://www.cnblogs.com/yswenli/p/8042594.html
并发系列64章(TPL 数据流)第七章的更多相关文章
- IDEA第七章----插件
idea的另一个可爱之处,就是它的强大的插件,下面我以CodeGlance插件为例,这个可以快速定位代码 第一节:安装插件 ● All plugins 显示所有插件. ● Enabled 显示当前所有 ...
- 《Entity Framework 6 Recipes》中文翻译系列 (38) ------ 第七章 使用对象服务之动态创建连接字符串和从数据库读取模型
翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 第七章 使用对象服务 本章篇幅适中,对真实应用中的常见问题提供了切实可行的解决方案. ...
- 《Entity Framework 6 Recipes》中文翻译系列 (41) ------ 第七章 使用对象服务之标识关系中使用依赖实体与异步查询保存
翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 7-7 标识关系中使用依赖实体 问题 你想在标识关系中插入,更新和删除一个依赖实体 ...
- [书籍翻译] 《JavaScript并发编程》第七章 抽取并发逻辑
本文是我翻译<JavaScript Concurrency>书籍的第七章 抽取并发逻辑,该书主要以Promises.Generator.Web workers等技术来讲解JavaScrip ...
- jQuery系列 第七章 jQuery框架DOM操作
第七章 jQuery框架的选择器 jQuery框架继承和优化了JavaScript访问DOM对象的特性,我们使用jQuery框架提供的api可以更加方便的操作DOM对象. 7.1 创建DOM节点 使用 ...
- 第七章 Rocketmq--消息驱动
今天咱们接着 上一篇第六章 Sleuth–链路追踪 继续写 SpringCloud Alibaba全家桶 , 第七章 Rocketmq--消息驱动,废话不多说,开始了 7.1 MQ简介 7.1.1 什 ...
- C primer plus 读书笔记第六章和第七章
这两章的标题是C控制语句:循环以及C控制语句:分支和跳转.之所以一起讲,是因为这两章内容都是讲控制语句. 第六章的第一段示例代码 /* summing.c --对用户输入的整数求和 */ #inclu ...
- 【原创】构建高性能ASP.NET站点 第七章 如何解决内存的问题(前中篇)—托管资源优化—监测CLR性能
原文:[原创]构建高性能ASP.NET站点 第七章 如何解决内存的问题(前中篇)-托管资源优化-监测CLR性能 构建高性能ASP.NET站点 第七章 如何解决内存的问题(前中篇)—托管资源优化—监测C ...
- 第七章——DMVs和DMFs(4)——用DMV和DMF监控磁盘IO
原文:第七章--DMVs和DMFs(4)--用DMV和DMF监控磁盘IO 前言: 本文为本系列最后一篇,作为DBA,你必须经常关注磁盘的I/O问题,一旦出现问题,要尽快分析出是什么问题.SQLServ ...
随机推荐
- 《Python学习手册 第五版》 -第15章 文档
本章主要介绍Python中的文档,会通过多种方式来说明,如果查看Python自带文档和其他参考的资料 本章重点内容 1.#注释:源文件文档 2.dir函数:以列表显示对象中可用的属性 3.文档字符串 ...
- mysql & Tomcat使用问题记录
mysql使用问题记录 1.mysql如何修改root密码 a.进入mysql安装目录b.登录 mysql -u root -pc.修改密码 mysql> SET PASSWORD FOR ro ...
- 设计模式 - 观察者模式 (C++实现)
#include <iostream> #include <list> #include <string> using namespace std; class I ...
- mycat主要参数
以下内容源于mycat官方文档,记录下来方便直接查看: mycat版本:1.6 负载均衡类型,目前的取值有 3 种:1. balance="0", 不开启读写分离机制,所有读操作都 ...
- Spring03——有关于 Spring AOP 的总结
本文将为各位带来 Spring 的另一个重点知识点 -- Spring AOP.关注我的公众号「Java面典」,每天 10:24 和你一起了解更多 Java 相关知识点. 什么是 AOP 面向切面编程 ...
- Oracle数据库的创建表全
CREATE TABLE "库名"."表名" ( "FEE_ID" VARCHAR2(10 BYTE) constraint ABS_FEE ...
- python快速入门基础知识
1.变量赋值与语句 #python 不需要手动指定变量类型.不需要分号 #To assign the value 365 to the variable days,we enter the varia ...
- Thinking in Java学习杂记(第7章)
将一个方法调用同一个方法主体连接到一起就称为"绑定"(Binding).若在程序运行以前执行绑定,就叫做"早期绑定".而Java中绑定的所有方法都采用后期绑定技 ...
- Educational Codeforces Round 83 (Rated for Div. 2)
A. Two Regular Polygons 题意:给你一个 正n边形,问你能否以这个 n 的其中一些顶点组成一个 m边形, 思路 :如果 n % m == 0 ,就可 收获:边均分 B. Bogo ...
- 关于C#三层架构增删改查中的“添加”问题
关于“添加”功能的实现比较简单: 先来一个简单的界面: 然后是代码: ··采用的是三层架构的思想写的·· 在DAO中的方法为: (使用了动软自动生成代码) 希望对您有所帮助!