PAT Advanced 1003 Emergency (25) [Dijkstra算法]
题目
As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.
Input Specification
Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<=500) – the number of cities (and the cities are numbered from 0 to N-1), M – the number of roads, C1 and C2 – the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.
Output Specification
For each test case, print in one line two numbers: the number of diferent shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather. All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.
Sample Input
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
Sample Output
2 4

题意
国家紧急救援组织的小组分布在全国各个城市,地图标出了每个城市的救援小组数目和城市间的公路(稀疏城市),若出现紧急情况,需要从当前城市出发走最短路径(标准:耗时最短)到达需要救援的城市,同时,要求路上能尽量找到更多帮手协助救援
输入:顶点和边,领导组所在城市,各个城市急救小组的数目
输出:最短路径数目和能找到最多救援小组助手的数目
题目分析
已知网图点权-城市急救小组数目,边权-城市间路程耗时,求最短路径,要求该最短路径点权和最大
输入:顶点,点权,边,边权
输出:最短路径数目 所有最短路径中最大点权和
解题思路
1. 存储图
存储边和边权
1.1 邻接表(题目已知稀疏图,用邻接表比较合适)
1.2 邻接矩阵
存储点权
整型数组
2. 求最短路径
- Dijkstra算法求最短路径,每次收集一个顶点到最短路径中时,若使得起点到其他顶点的最短路径更短,则更新dist[i],若等于dist[i],需比较其点权和,若点权和更大则更新dist[i];
注:本题不需要记录路径,int path[n]可以省略
Code
Code 01(邻接表)
#include <iostream>
#include <vector>
using namespace std;
const int maxn=510;
const int INF=9999999;
int n,c1,c2,vw[maxn]; //g边;vw点权
int dist[maxn],col[maxn];// col已经找到最小路径的顶点收集到col中
int w[maxn],num[maxn];
struct node{
int v;
int w;
};
vector<node> gw[maxn]; //gw边权;
/* dijkstra算法 求最短路径 */
int dmin() {
int min=INF,mini=0;
for(int i=0; i<n; i++) {
if(col[i]==1)continue; // 跳过被收集的点
if(min>dist[i]) {
min=dist[i]; //没有被收集的顶点中的最小者
mini=i;
}
}
return mini;
}
void dijkstra(int c) {
fill(dist,dist+n,INF);
dist[c]=0;
num[c]=1; //起点c1到其直连的顶点,都只有一条最短路径
w[c]=vw[c]; //起点c1的点权
for(int i=0; i<n; i++) {
int min=dmin(); //当前dist中最小值对应的顶点
if(min==c2) break; //已找到目标顶点
col[min]=1;
for(int j=0; j<gw[min].size(); j++) {
node e = gw[min][j];
if(col[e.v]==1)continue; //跳过 已被收集的顶点
if(dist[min]+e.w<dist[e.v]) {
dist[e.v]=dist[min]+e.w; //更新dist
w[e.v]=w[min]+vw[e.v]; // 更新c1到j的最短所有路径中的最大权重和
num[e.v]=num[min]; // 更新c1到j的最短路径数
} else if(dist[min]+e.w==dist[e.v]) {
if(w[min]+vw[e.v]>w[e.v])
w[e.v]=w[min]+vw[e.v];
num[e.v]+=num[min];
}
}
}
}
int main(int argc,char * argv[]) {
int m,a,b,r;
scanf("%d %d %d %d",&n,&m,&c1,&c2);
for(int i=0; i<n; i++)
scanf("%d",&vw[i]); //点权
for(int i=0; i<m; i++) {
scanf("%d %d %d",&a,&b,&r);
gw[a].push_back({b,r});
gw[b].push_back({a,r});
}
dijkstra(c1);
printf("%d %d",num[c2],w[c2]);
return 0;
}
Code 02
#include <iostream>
using namespace std;
const int maxn=510;
const int INF=9999999;
int n,c1,c2,gw[maxn][maxn],vw[maxn]; //g边;gw边权;vw点权
int dist[maxn],col[maxn];// col已经找到最小路径的顶点收集到col中
int w[maxn],num[maxn];
/* dijkstra算法 求最短路径 */
int dmin() {
int min=INF,mini=0;
for(int i=0; i<n; i++) {
if(col[i]==1)continue; // 跳过被收集的点
if(min>dist[i]) {
min=dist[i]; //没有被收集的顶点中的最小者
mini=i;
}
}
return mini;
}
void dijkstra(int c) {
fill(dist,dist+n,INF);
dist[c]=0;
num[c]=1; //起点c1到其直连的顶点,都只有一条最短路径
w[c]=vw[c]; //起点c1的点权
for(int i=0; i<n; i++) {
int min=dmin(); //当前dist中最小值对应的顶点
if(min==c2) break; //已找到目标顶点
col[min]=1;
for(int j=0; j<n; j++) {
if(gw[min][j]==0||col[j]==1)continue; //跳过 已被收集的顶点
if(dist[min]+gw[min][j]<dist[j]) {
dist[j]=dist[min]+gw[min][j]; //更新dist
w[j]=w[min]+vw[j]; // 更新c1到j的最短所有路径中的最大权重和
num[j]=num[min]; // 更新c1到j的最短路径数
} else if(dist[min]+gw[min][j]==dist[j]) {
if(w[min]+vw[j]>w[j])
w[j]=w[min]+vw[j];
num[j]+=num[min];
}
}
}
}
int main(int argc,char * argv[]) {
int m,a,b,r;
scanf("%d %d %d %d",&n,&m,&c1,&c2);
for(int i=0; i<n; i++)
scanf("%d",&vw[i]); //点权
for(int i=0; i<m; i++) {
scanf("%d %d %d",&a,&b,&r);
gw[a][b]=gw[b][a]=r; //边权
}
dijkstra(c1);
printf("%d %d",num[c2],w[c2]);
return 0;
}

PAT Advanced 1003 Emergency (25) [Dijkstra算法]的更多相关文章
- PAT 甲级 1003. Emergency (25)
1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...
- PAT Advanced 1003 Emergency 详解
题目与翻译 1003 Emergency 紧急情况 (25分) As an emergency rescue team leader of a city, you are given a specia ...
- PAT 甲级1003 Emergency (25)(25 分)(Dikjstra,也可以自己到自己!)
As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...
- PAT (Advanced level) 1003. Emergency (25) Dijkstra
As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...
- PAT Advanced 1070 Mooncake (25) [贪⼼算法]
题目 Mooncake is a Chinese bakery product traditionally eaten during the Mid-Autumn Festival. Many typ ...
- PAT 解题报告 1003. Emergency (25)
1003. Emergency (25) As an emergency rescue team leader of a city, you are given a special map of yo ...
- PAT 1003. Emergency (25)
1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...
- PAT 1003. Emergency (25) dij+增加点权数组和最短路径个数数组
1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...
- 1003 Emergency (25)(25 point(s))
problem 1003 Emergency (25)(25 point(s)) As an emergency rescue team leader of a city, you are given ...
随机推荐
- Vue中 v-for 绑定key和不绑定key的区别
首先,它们区别主要在于 虚拟DOM的复用,绑定key可以更好的复用,下面来详细讲一下 假如我们有一个数组 arr = [1,2,3,4],我们要在2后面插入一个值9: 如果绑定了key值,那么会是这样 ...
- docker-jenkins SSH Publishers时踩的坑
source相对路径问题,不是 /var/jenkins_home/workspace/build-renren/target/renren-fast.war 或环境变量,而是 target/re ...
- Kubernetes 各版本镜像列表
以下镜像列表由 kubeadm v1.11.1 导出,若使用预下载镜像离线部署的方式部署,请使用 kubeadm v1.11.1 版本 导出各版本镜像列表: kubeadm config images ...
- 宏碁发布两款全A平台笔记本:良心价
导读 8月3日消息,在全球数码互动娱乐盛会ChinaJoy上,宏碁推出全新两款全A平台笔记本——暗影骑士4 锐龙版酷冷游戏本和蜂鸟Swift3锐龙版金属轻薄本. 此次发布的宏碁暗影骑士4 锐龙版笔记本 ...
- node - multer 加图片后缀
var multer = require('multer') var storage = multer.diskStorage({ destination: function (req, file ...
- Java虚拟机05.2(内存分配)
jdk1.7中堆内存分为:年轻代+老年代+永久代.但是永久代有作为非堆内存存在,也就是说堆内存的大小应该为年轻代+老年代.在tomcat容器中,如果jsp页面过多可能出现永久代溢出.通常栈溢出都是程序 ...
- [Codeforces]1263B PIN Code
题目 A PIN code is a string that consists of exactly 444 digits. Examples of possible PIN codes: 70137 ...
- 请求接口得到一段markdowm遇到的问题
如图,在console里看得到这段数据 有<br>之类的东东,但是我们用部分富文本解析工具可能会显示不了回车,所以我们可以自己动手: 主要就是利用js的replace方法来把<br& ...
- 构造方法与setter方法
上一个随笔提到了constructor-arg子标签,此随笔将会介绍一些类型的赋值方法 ①String类型.基本数据类型或其包装类都可以使用value标签属性赋值 String类型和基本类型的操作如下 ...
- 项目中常用的JS操作技巧
1.<a>标签-超链接中confirm方法使用介绍 <a href="a.html" onclick="if(confirm('确定删除?')==fal ...