Random Variable

\(\underline{cdf:}\)cumulative distribution function \(F(x)=P(X \leq x)\)
\(\underline{pmf:}\)probability mass function(for discrete probability distribution )
(1)\(p(x) \geq0,x \in X\)
(2)\(\sum\limits_{x \in X}P(x)=1\)
\(\underline{pdf:}\)probability density function(for continuous probability distribution )
(1)\(f(x) \geq 0\)for all x,
(2)\(\int_{-\infty}^{\infty}f(x)dx=1\)

discrete distribution:

Negative Binomial Distribution
\(\left(\begin{array}{c}{k+r-1} \\ {k}\end{array}\right)=\frac{(k+r-1) !}{k !(r-1) !}=\frac{(k+r-1)(k+r-2) \ldots(r)}{k !}=(-1)^{k} \frac{(-k-r+1)(-k-r+2) \ldots(-r)}{k !}=(-1)^{k}\left(\begin{array}{c}{-r} \\ {k}\end{array}\right)\)

continuous distribution:

Normal distibution:\(\int_\limits{\mathbb{R}} \exp \left(-\frac{x^{2}}{2}\right) \mathrm{d} x=1\)
\(\int_{0}^{\infty}\exp \left(-\frac{x^{2}}{2}\right) \mathrm{d} x=\frac{1}{2}\)
\(X \looparrowright N(\mu,\sigma^2)\)
pdf:\(p(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}\)
cdf:\(F(x)=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^xe^{\frac{-(t-\mu)^2}{2\sigma^2}}dt\)

Distribution的更多相关文章

  1. 齐夫定律, Zipf's law,Zipfian distribution

    齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...

  2. CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution

    今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...

  3. Wishart distribution

    Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...

  4. distribution 中一直在运行 waitfor delay @strdelaytime 语句

    Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...

  5. Distribution2:Distribution Writer

    Distribution Writer 调用Statement Delivery 存储过程,将Publication的改变同步到Subscriber中.查看Publication Properties ...

  6. Distribution1:Distribution Reader

    在transactional replication中,在publication中执行了一个更新,例如:update table set col=? Where ?,如果table中含有大量的数据行, ...

  7. 设置Distribution clean up 每次删除Command的数量

    Replication Job “Distribution clean up: distribution” 默认设置是,每10minutes运行一次,每次删除2000个Command.这对于有1.9亿 ...

  8. Your account already has a valid iOS Distribution certificate!

    iOS 发布提交出现:Your account already has a valid iOS Distribution certificate!问题解决 转载的链接   http://www.jia ...

  9. Replication-Replication Distribution Subsystem: agent xxxxxx failed. Column names in each table must be unique

    最近遇到一个关于发布订阅(Replication)的奇葩问题,特此记录一下这个案例.我们一SQL SERVER数据库服务器出现大量告警.告警信息如下所示: DESCRIPTION: Replicati ...

  10. SQL Server删除distribution数据库

    在数据库服务器删除复制(发布订阅)后,如何删除掉数据库distribution呢?如果你通过SSMS工具去删除数据库distribution,你会发现根本没有删除选项. 下面介绍一下删除distrib ...

随机推荐

  1. cf1208 D Restore Permutation (二分+树状数组)

    题意 让你构造一个长度为n的序列,记为p1……pn,(这个序列是1~n的全排列的一种) 给你n个数,记为s1……sn,si的值为p1……pi-1中小于pi的数的和. 思路 显然,应该倒着来,也就是从p ...

  2. sychronized和lock和区别

    syschronized和lock的区别 synchronized的锁可重入.不可中断.非公平,而Lock锁可重入.可中断.可公平.绑定多个Condition.(两者皆可重入)synchronized ...

  3. 设置MySQL客户端连接使用的字符集

    设置MySQL客户端连接使用的字符集 时间:2014-03-05    来源:服务器之家    投稿:root 考虑什么是一个"连接":它是连接服务器时所作的事情.客户端发送SQL ...

  4. 数的划分(DFS、DP)

    https://www.luogu.com.cn/problem/P1025 题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是 ...

  5. Java线程——线程之间的数据共享

      在 Java 传统线程机制中的共享数据方式,大致可以简单分两种情况: ➢ 多个线程行为一致,共同操作一个数据源.也就是每个线程执行的代码相同,可以使用同一个 Runnable 对象,这个 Runn ...

  6. 寒假day17-本周计划

    完善人才的数据挖掘模块 结合当下疫情完成人才动态模块 修正人才标签部分 优化界面

  7. webpack4+vue 打包 就是没效果?求解!!!

    开始对着视频操作 教学视频 用的webpack2 所以没成功  但是 Jquery 可以 成功渲染.Vue就不行. 百度 webpack4+vue打包简单入门:https://segmentfault ...

  8. Python 安装modules问题及import问题

    >>>modules问题 在学习Python的数据可视化时,安装了matplotlib,在安装完成后还特意在终端测试了一下,结果显示能正常import 但是在sublime Text ...

  9. coures包下载和安装 可解决报错ImportError: No module named '_curses'

    http://blog.csdn.net/liyaoqing/article/details/54949253 coures curses 库 ( ncurses )提供了控制字符屏幕的独立于终端的方 ...

  10. LeetCode——324. 摆动排序 II

    给定一个无序的数组 nums,将它重新排列成 nums[0] < nums[1] > nums[2] < nums[3]... 的顺序. 示例 1: 输入: nums = [1, 5 ...