1 问题描述

深度优先查找(depth-first search,DFS)可以从任意顶点开始访问图的顶点,然后把该顶点标记为已访问。在每次迭代的时候,该算法紧接着处理与当前顶点邻接的未访问顶点。这个过程一直持续,直到遇到一个终点——该顶点的所有邻接顶点都已被访问过。在该终点上,该算法沿着来路后退一条边,并试着继续从那里访问未访问的顶点。再后退到起始顶点上,并且起始顶点也是一个终点时,该算法最终停了下来。这样,起始顶点所在的连通分量的所有顶点都被访问过了。如果,未访问过的顶点仍然存在,该算法必须从其中任一点开始,重复上述过程。

总之,记住一句话,深度优先查找就是先尽可能达到当前遍历路径能够达到最长的路径,一旦达到该路径终点,再回溯,从原来已遍历过顶点(PS:该顶点包含多个分支路径)处开始新的分支路径遍历。

2 解决方案

2.1 蛮力法


此处借用算法设计与分析基础(第三版)上一段概念介绍,及说明图形介绍其具体遍历过程,下面的具体代码使用数据就是下图中相关数据。

package com.liuzhen.chapterThree;

public class DepthFirstSearch {
public int count = 0; //用于计算遍历总次数
/*
* adjMatrix是待遍历图的邻接矩阵
* value是待遍历图顶点用于是否被遍历的判断依据,0代表未遍历,非0代表已被遍历
* result用于存放深度优先遍历的顶点顺序
*/
public void dfs(int[][] adjMatrix,int[] value,char[] result){
for(int i = 0;i < value.length;i++){
if(value[i] == 0){
char temp = (char) ('a' + i);
System.out.println();
System.out.println("深度为:"+i+",当前出发点:"+temp);
result[i] = temp; //存放当前正在遍历顶点下标字母
dfsVisit(adjMatrix,value,result,i);
}
}
}
/*
* adjMatrix是待遍历图的邻接矩阵
* value是待遍历图顶点用于是否被遍历的判断依据,0代表未遍历,非0代表已被遍历
* result用于存放深度优先遍历的顶点顺序
* number是当前正在遍历的顶点在邻接矩阵中的数组下标编号
*/
public void dfsVisit(int[][] adjMatrix,int[] value,char[] result,int number){
value[number] = ++count; //把++count赋值给当前正在遍历顶点判断值数组元素,变为非0,代表已被遍历
System.out.print("当前已行走顶点value["+number+"] = "+value[number]+" ");
for(int i = 0;i < value.length;i++){
if(adjMatrix[number][i] == 1 && value[i] == 0){ //当当前顶点的相邻有相邻顶点可行走且其为被遍历
char temp = (char) ('a' + i);
result[count] = temp; //存放即将行走的顶点下标字母
System.out.println(" 当前i值:"+i+" 到达"+temp+"地");
dfsVisit(adjMatrix,value,result,i); //执行递归,行走第i个顶点
}
}
} public static void main(String[] args){
int[] value = new int[10]; //初始化后,各元素均为0
char[] result = new char[10];
int[][] adjMatrix = {{0,0,1,1,1,0,0,0,0,0},
{0,0,0,0,1,1,0,0,0,0},
{1,0,0,1,0,1,0,0,0,0},
{1,0,1,0,0,0,0,0,0,0},
{1,1,0,0,0,1,0,0,0,0},
{0,1,1,0,1,0,0,0,0,0},
{0,0,0,0,0,0,0,1,0,1},
{0,0,0,0,0,0,1,0,1,0},
{0,0,0,0,0,0,0,1,0,1},
{0,0,0,0,0,0,1,0,1,0}};
DepthFirstSearch test = new DepthFirstSearch();
test.dfs(adjMatrix,value,result);
System.out.println();
System.out.println("判断节点是否被遍历结果(0代表未遍历,非0代表已被遍历):");
for(int i = 0;i < value.length;i++)
System.out.print(" "+value[i]);
System.out.println();
System.out.println("深度优先查找遍历顺序如下:");
for(int i = 0;i < result.length;i++)
System.out.print(" "+result[i]);
}
}

运行结果:

深度为:0,当前出发点:a
当前已行走顶点value[0] = 1 当前i值:2 到达c地
当前已行走顶点value[2] = 2 当前i值:3 到达d地
当前已行走顶点value[3] = 3 当前i值:5 到达f地
当前已行走顶点value[5] = 4 当前i值:1 到达b地
当前已行走顶点value[1] = 5 当前i值:4 到达e地
当前已行走顶点value[4] = 6
深度为:6,当前出发点:g
当前已行走顶点value[6] = 7 当前i值:7 到达h地
当前已行走顶点value[7] = 8 当前i值:8 到达i地
当前已行走顶点value[8] = 9 当前i值:9 到达j地
当前已行走顶点value[9] = 10
判断节点是否被遍历结果(0代表未遍历,非0代表已被遍历):
5 2 3 6 4 7 8 9 10
深度优先查找遍历顺序如下:
a c d f b e g h i j

Java实现DFS深度优先查找的更多相关文章

  1. 算法笔记_020:深度优先查找(Java)

    目录 1 问题描述 2 解决方案 2.1 蛮力法 1 问题描述 深度优先查找(depth-first search,DFS)可以从任意顶点开始访问图的顶点,然后把该顶点标记为已访问.在每次迭代的时候, ...

  2. HDU 1241 Oil Deposits DFS(深度优先搜索) 和 BFS(广度优先搜索)

    Oil Deposits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...

  3. HDU 4707 Pet(DFS(深度优先搜索)+BFS(广度优先搜索))

    Pet Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...

  4. DFS应用——查找强分支

    [0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 "DFS应用--查找强分支" 的idea 并用源代码加以实现 : [1]查找强分支 1 ...

  5. Java中常用的查找算法——顺序查找和二分查找

    Java中常用的查找算法——顺序查找和二分查找 神话丿小王子的博客 一.顺序查找: a) 原理:顺序查找就是按顺序从头到尾依次往下查找,找到数据,则提前结束查找,找不到便一直查找下去,直到数据最后一位 ...

  6. Java学习之二分查找算法

    好久没写算法了.只记得递归方法..结果测试下爆栈了. 思路就是取范围的中间点,判断是不是要找的值,是就输出,不是就与范围的两个临界值比较大小,不断更新临界值直到找到为止,给定的集合一定是有序的. 自己 ...

  7. Java进阶(三十九)Java集合类的排序,查找,替换操作

    Java进阶(三十九)Java集合类的排序,查找,替换操作 前言 在Java方向校招过程中,经常会遇到将输入转换为数组的情况,而我们通常使用ArrayList来表示动态数组.获取到ArrayList对 ...

  8. 回溯算法 DFS深度优先搜索 (递归与非递归实现)

    回溯法是一种选优搜索法(试探法),被称为通用的解题方法,这种方法适用于解一些组合数相当大的问题.通过剪枝(约束+限界)可以大幅减少解决问题的计算量(搜索量). 基本思想 将n元问题P的状态空间E表示成 ...

  9. (原创)不过如此的 DFS 深度优先遍历

    DFS 深度优先遍历 DFS算法用于遍历图结构,旨在遍历每一个结点,顾名思义,这种方法把遍历的重点放在深度上,什么意思呢?就是在访问过的结点做标记的前提下,一条路走到天黑,我们都知道当每一个结点都有很 ...

随机推荐

  1. 【hdu1007】最近点对

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 分治法的经典应用,复杂度可以证明为nlognlogn #include <iostream> ...

  2. linux --开机自动挂载硬盘【转】

    转:http://c.biancheng.net/view/900.html 了解了 mount 命令之后,读者可能会问,系统如何在开机时自动挂载硬盘,它又是怎么知道哪些分区是需要挂载的呢? 很简单, ...

  3. Reids的面试题

    1.什么是Redis?简述它的优缺点? Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到 ...

  4. C语言关于数据类型转换

    自动类型转换 自动类型转换就是编译器默默地.隐式地.偷偷地进行的数据类型转换,这种转换不需要程序员干预,会自动发生. 1) 将一种类型的数据赋值给另外一种类型的变量时就会发生自动类型转换,例如: ; ...

  5. EL表达式用法---查询博客

    jsp脚本:<%=request.getAttribute(name)%>EL表达式替代上面的脚本:${requestScope.name} 使用EL最主要的作用是获得四大域中的数据,格式 ...

  6. C# 数据操作系列 - 17 Dapper ——号称可以与ADO.NET 同台飙车的ORM

    0. 前言 之前四篇介绍了一个国内开发者开发的优秀框架SqlSugar,给我们眼前一亮的感觉.这一篇,我们将试试另一个出镜率比较高的ORM框架-Dapper. Dapper是一个轻量级的ORM框架,其 ...

  7. 《HelloGitHub》第 50 期

    兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编程新手.热爱编程.对开源社区感兴趣 人群的月刊,月刊的内容包括:各种编 ...

  8. [PHP学习教程 - 网络]003.获得当前访问的页面URL(Current Request URL)

    引言:获取当前请求的URL路径,自动判断协议(HTTP or HTTPS). 一句话的事情,下面直接上高清无MSK的精妙代码! 功能函数 获得当前请求的页面路径(URL)地址 语法:$url = ge ...

  9. [JavaWeb基础] 017.Struts2 和 ajax交互简介

    在网页开发中,我们为了只对网页的某块内容进行实时更新,而不对其他不需要更新的内容进行刷新,从而提高响应速度和节省流量,我们采用了页面的异步刷新技术Ajax,那么我们的Struts2框架在这一方面是如何 ...

  10. [JavaWeb基础] 008.Spring初步配置

    框架简介: Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One J2EE Develop ...