neural networks + feature engineering for the win

导入需要的库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
import datetime
from kaggle.competitions import nflrush
import tqdm
import re
from string import punctuation
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
import keras
from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping
from keras.utils import plot_model
import keras.backend as K
import tensorflow as tf sns.set_style('darkgrid')
mpl.rcParams['figure.figsize'] = [15,10]
env = nflrush.make_env()
train = pd.read_csv('../input/nfl-big-data-bowl-2020/train.csv', dtype={'WindSpeed': 'object'})

全面分析

train.head()

特征工程

#from https://www.kaggle.com/prashantkikani/nfl-starter-lgb-feature-engg
train['DefendersInTheBox_vs_Distance'] = train['DefendersInTheBox'] / train['Distance']

分类特征

cat_features = []
for col in train.columns:
if train[col].dtype =='object':
cat_features.append((col, len(train[col].unique())))
cat_features

对其中一些特性进行预处理。

球场类型

train['StadiumType'].value_counts()

已经看到一些拼写错误了,下面来改正它们。

def clean_StadiumType(txt):
if pd.isna(txt):
return np.nan
txt = txt.lower()
txt = ''.join([c for c in txt if c not in punctuation])
txt = re.sub(' +', ' ', txt)
txt = txt.strip()
txt = txt.replace('outside', 'outdoor')
txt = txt.replace('outdor', 'outdoor')
txt = txt.replace('outddors', 'outdoor')
txt = txt.replace('outdoors', 'outdoor')
txt = txt.replace('oudoor', 'outdoor')
txt = txt.replace('indoors', 'indoor')
txt = txt.replace('ourdoor', 'outdoor')
txt = txt.replace('retractable', 'rtr.')
return txt
train['StadiumType'] = train['StadiumType'].apply(clean_StadiumType)

根据pareto's原则,我们只关注这些词: outdoor, indoor, closed and open.。

def transform_StadiumType(txt):
if pd.isna(txt):
return np.nan
if 'outdoor' in txt or 'open' in txt:
return 1
if 'indoor' in txt or 'closed' in txt:
return 0
return np.nan
train['StadiumType'] = train['StadiumType'].apply(transform_StadiumType)

草坪

#from https://www.kaggle.com/c/nfl-big-data-bowl-2020/discussion/112681#latest-649087
Turf = {'Field Turf':'Artificial',
'A-Turf Titan':'Artificial',
'Grass':'Natural',
'UBU Sports Speed S5-M':'Artificial',
'Artificial':'Artificial',
'DD GrassMaster':'Artificial',
'Natural Grass':'Natural',
'UBU Speed Series-S5-M':'Artificial',
'FieldTurf':'Artificial',
'FieldTurf 360':'Artificial',
'Natural grass':'Natural',
'grass':'Natural',
'Natural':'Natural',
'Artifical':'Artificial',
'FieldTurf360':'Artificial',
'Naturall Grass':'Natural',
'Field turf':'Artificial',
'SISGrass':'Artificial',
'Twenty-Four/Seven Turf':'Artificial',
'natural grass':'Natural'} train['Turf'] = train['Turf'].map(Turf)
train['Turf'] = train['Turf'] == 'Natural'

拥有的队伍

train[(train['PossessionTeam']!=train['HomeTeamAbbr']) & (train['PossessionTeam']!=train['VisitorTeamAbbr'])][['PossessionTeam', 'HomeTeamAbbr', 'VisitorTeamAbbr']]

在BLT和BAL,ARZ,ARI这样的球队上有一些问题。下面来改正一下。

sorted(train['HomeTeamAbbr'].unique()) == sorted(train['VisitorTeamAbbr'].unique())
diff_abbr = []
for x,y in zip(sorted(train['HomeTeamAbbr'].unique()), sorted(train['PossessionTeam'].unique())):
if x!=y:
print(x + " " + y)

这里有三个问题,让我们来解决它。

map_abbr = {'ARI': 'ARZ', 'BAL': 'BLT', 'CLE': 'CLV', 'HOU': 'HST'}
for abb in train['PossessionTeam'].unique():
map_abbr[abb] = abb
train['PossessionTeam'] = train['PossessionTeam'].map(map_abbr)
train['HomeTeamAbbr'] = train['HomeTeamAbbr'].map(map_abbr)
train['VisitorTeamAbbr'] = train['VisitorTeamAbbr'].map(map_abbr)
train['HomePossesion'] = train['PossessionTeam'] == train['HomeTeamAbbr']
train['Field_eq_Possession'] = train['FieldPosition'] == train['PossessionTeam']
train['HomeField'] = train['FieldPosition'] == train['HomeTeamAbbr']

进攻方式

off_form = train['OffenseFormation'].unique()
train['OffenseFormation'].value_counts()

由于我没有任何关于这方面的知识,我只对这个特性进行一次热编码

train = pd.concat([train.drop(['OffenseFormation'], axis=1), pd.get_dummies(train['OffenseFormation'], prefix='Formation')], axis=1)
dummy_col = train.columns

比赛时间

Game clock is supposed to be a numerical feature.

train['GameClock'].value_counts()

已经有了四分之一的功能,可以将游戏时间除以15分钟,这样就可以得到四分之一的正常时间。

def strtoseconds(txt):
txt = txt.split(':')
ans = int(txt[0])*60 + int(txt[1]) + int(txt[2])/60
return ans
train['GameClock'] = train['GameClock'].apply(strtoseconds)
sns.distplot(train['GameClock'])

球员的身高

train['PlayerHeight‘]

1 ft =12 in, 因此:

train['PlayerHeight'] = train['PlayerHeight'].apply(lambda x: 12*int(x.split('-')[0])+int(x.split('-')[1]))
train['PlayerBMI'] = 703*(train['PlayerWeight']/(train['PlayerHeight'])**2)

Time handoff 和 snap 和参赛者生日

train['TimeHandoff']
train['TimeHandoff'] = train['TimeHandoff'].apply(lambda x: datetime.datetime.strptime(x, "%Y-%m-%dT%H:%M:%S.%fZ"))
train['TimeSnap'] = train['TimeSnap'].apply(lambda x: datetime.datetime.strptime(x, "%Y-%m-%dT%H:%M:%S.%fZ"))
train['TimeDelta'] = train.apply(lambda row: (row['TimeHandoff'] - row['TimeSnap']).total_seconds(), axis=1)
train['PlayerBirthDate'] = train['PlayerBirthDate'].apply(lambda x: datetime.datetime.strptime(x, "%m/%d/%Y"))

让我们用time handoff来计算参赛者的年龄

seconds_in_year = 60*60*24*365.25
train['PlayerAge'] = train.apply(lambda row: (row['TimeHandoff']-row['PlayerBirthDate']).total_seconds()/seconds_in_year, axis=1)
train = train.drop(['TimeHandoff', 'TimeSnap', 'PlayerBirthDate'], axis=1)

风速及风向

train['WindSpeed'].value_counts()

可以看到有些值是不标准化的(例如,12mph),将从所有的值中删除mph。

train['WindSpeed'] = train['WindSpeed'].apply(lambda x: x.lower().replace('mph', '').strip() if not pd.isna(x) else x)
train['WindSpeed'].value_counts()
#let's replace the ones that has x-y by (x+y)/2
# and also the ones with x gusts up to y
train['WindSpeed'] = train['WindSpeed'].apply(lambda x: (int(x.split('-')[0])+int(x.split('-')[1]))/2 if not pd.isna(x) and '-' in x else x)
train['WindSpeed'] = train['WindSpeed'].apply(lambda x: (int(x.split()[0])+int(x.split()[-1]))/2 if not pd.isna(x) and type(x)!=float and 'gusts up to' in x else x)
def str_to_float(txt):
try:
return float(txt)
except:
return -1
train['WindSpeed'] = train['WindSpeed'].apply(str_to_float)
train['WindDirection'].value_counts()
def clean_WindDirection(txt):
if pd.isna(txt):
return np.nan
txt = txt.lower()
txt = ''.join([c for c in txt if c not in punctuation])
txt = txt.replace('from', '')
txt = txt.replace(' ', '')
txt = txt.replace('north', 'n')
txt = txt.replace('south', 's')
txt = txt.replace('west', 'w')
txt = txt.replace('east', 'e')
return txt
train['WindDirection'] = train['WindDirection'].apply(clean_WindDirection)
train['WindDirection'].value_counts()
def transform_WindDirection(txt):
if pd.isna(txt):
return np.nan
if txt=='n':
return 0
if txt=='nne' or txt=='nen':
return 1/8
if txt=='ne':
return 2/8
if txt=='ene' or txt=='nee':
return 3/8
if txt=='e':
return 4/8
if txt=='ese' or txt=='see':
return 5/8
if txt=='se':
return 6/8
if txt=='ses' or txt=='sse':
return 7/8
if txt=='s':
return 8/8
if txt=='ssw' or txt=='sws':
return 9/8
if txt=='sw':
return 10/8
if txt=='sww' or txt=='wsw':
return 11/8
if txt=='w':
return 12/8
if txt=='wnw' or txt=='nww':
return 13/8
if txt=='nw':
return 14/8
if txt=='nwn' or txt=='nnw':
return 15/8
return np.nan
train['WindDirection'] = train['WindDirection'].apply(transform_WindDirection)

PlayDirection

train['PlayDirection'].value_counts()
train['PlayDirection'] = train['PlayDirection'].apply(lambda x: x.strip() == 'right')

队伍

train['Team'] = train['Team'].apply(lambda x: x.strip()=='home')

比赛时天气

train['GameWeather'].unique()

将应用以下预处理:

  • 转成小写
  • N/A Indoor, N/A (Indoors) and Indoor => indoor 把它们聚在一起.·
  • coudy and clouidy => cloudy
  • party => partly
  • sunny and clear => clear and sunny
  • skies and mostly => ""
train['GameWeather'] = train['GameWeather'].str.lower()
indoor = "indoor"
train['GameWeather'] = train['GameWeather'].apply(lambda x: indoor if not pd.isna(x) and indoor in x else x)
train['GameWeather'] = train['GameWeather'].apply(lambda x: x.replace('coudy', 'cloudy').replace('clouidy', 'cloudy').replace('party', 'partly') if not pd.isna(x) else x)
train['GameWeather'] = train['GameWeather'].apply(lambda x: x.replace('clear and sunny', 'sunny and clear') if not pd.isna(x) else x)
train['GameWeather'] = train['GameWeather'].apply(lambda x: x.replace('skies', '').replace("mostly", "").strip() if not pd.isna(x) else x)
train['GameWeather'].unique()

查看天气描述中最常见的词汇

from collections import Counter
weather_count = Counter()
for weather in train['GameWeather']:
if pd.isna(weather):
continue
for word in weather.split():
weather_count[word]+=1 weather_count.most_common()[:15]

要对我们的天气进行编码,我们要做下面的映射:

  • climate controlled or indoor => 3, sunny or sun => 2, clear => 1, cloudy => -1, rain => -2, snow => -3, others => 0
  • partly => multiply by 0.5
def map_weather(txt):
ans = 1
if pd.isna(txt):
return 0
if 'partly' in txt:
ans*=0.5
if 'climate controlled' in txt or 'indoor' in txt:
return ans*3
if 'sunny' in txt or 'sun' in txt:
return ans*2
if 'clear' in txt:
return ans
if 'cloudy' in txt:
return -ans
if 'rain' in txt or 'rainy' in txt:
return -2*ans
if 'snow' in txt:
return -3*ans
return 0
train['GameWeather'] = train['GameWeather'].apply(map_weather)

NflId NflIdRusher

train['IsRusher'] = train['NflId'] == train['NflIdRusher']
train.drop(['NflId', 'NflIdRusher'], axis=1, inplace=True)

PlayDirection problems

有一个问题,有一些特征,如X和Y,因为比赛方向,下面来修复这些问题

X, 定位和方向

train['X'] = train.apply(lambda row: row['X'] if row['PlayDirection'] else 120-row['X'], axis=1)
#from https://www.kaggle.com/scirpus/hybrid-gp-and-nn
def new_orientation(angle, play_direction):
if play_direction == 0:
new_angle = 360.0 - angle
if new_angle == 360.0:
new_angle = 0.0
return new_angle
else:
return angle
train['Orientation'] = train.apply(lambda row: new_orientation(row['Orientation'], row['PlayDirection']), axis=1)
train['Dir'] = train.apply(lambda row: new_orientation(row['Dir'], row['PlayDirection']), axis=1)

YardsLeft

我们来计算一下距离终点还有多少码。

train['YardsLeft'] = train.apply(lambda row: 100-row['YardLine'] if row['HomeField'] else row['YardLine'], axis=1)
train['YardsLeft'] = train.apply(lambda row: row['YardsLeft'] if row['PlayDirection'] else 100-row['YardsLeft'], axis=1)
((train['YardsLeft']<train['Yards'])|(train['YardsLeft']-100>train['Yards'])).mean()

Clearly: Yards<=YardsLeft and YardsLeft-100<=Yards,因此,将删除这些错误的行.

train.drop(train.index[(train['YardsLeft']<train['Yards']) | (train['YardsLeft']-100>train['Yards'])], inplace=True)

Baseline model

放弃分类特性,在模型中运行一个简单的随机森林

train = train.sort_values(by=['PlayId', 'Team', 'IsRusher', 'JerseyNumber']).reset_index()
train.drop(['GameId', 'PlayId', 'index', 'IsRusher', 'Team'], axis=1, inplace=True)
cat_features = []
for col in train.columns:
if train[col].dtype =='object':
cat_features.append(col)
train = train.drop(cat_features, axis=1)

现在要为每一场比赛做一个大的排,其中最后一个是冲锋者

train.fillna(-999, inplace=True)
players_col = []
for col in train.columns:
if train[col][:22].std()!=0:
players_col.append(col)
X_train = np.array(train[players_col]).reshape(-1, len(players_col)*22)
play_col = train.drop(players_col+['Yards'], axis=1).columns
X_play_col = np.zeros(shape=(X_train.shape[0], len(play_col)))
for i, col in enumerate(play_col):
X_play_col[:, i] = train[col][::22]
X_train = np.concatenate([X_train, X_play_col], axis=1)
y_train = np.zeros(shape=(X_train.shape[0], 199))
for i,yard in enumerate(train['Yards'][::22]):
y_train[i, yard+99:] = np.ones(shape=(1, 100-yard))
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
batch_size=64
class RAdam(keras.optimizers.Optimizer):
"""RAdam optimizer.
# Arguments
learning_rate: float >= 0. Learning rate.
beta_1: float, 0 < beta < 1. Generally close to 1.
beta_2: float, 0 < beta < 1. Generally close to 1.
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
decay: float >= 0. Learning rate decay over each update.
weight_decay: float >= 0. Weight decay for each param.
amsgrad: boolean. Whether to apply the AMSGrad variant of this
algorithm from the paper "On the Convergence of Adam and
Beyond".
total_steps: int >= 0. Total number of training steps. Enable warmup by setting a positive value.
warmup_proportion: 0 < warmup_proportion < 1. The proportion of increasing steps.
min_lr: float >= 0. Minimum learning rate after warmup.
# References
- [Adam - 一种随机优化方法](https://arxiv.org/abs/1412.6980v8)
- [关于Adam和Beyond的收敛 ](https://openreview.net/forum?id=ryQu7f-RZ)
- [研究了自适应学习速率的方差及其影响因素](https://arxiv.org/pdf/1908.03265v1.pdf)
""" def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., weight_decay=0., amsgrad=False,
total_steps=0, warmup_proportion=0.1, min_lr=0., **kwargs):
learning_rate = kwargs.pop('lr', learning_rate)
super(RAdam, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.learning_rate = K.variable(learning_rate, name='learning_rate')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
self.weight_decay = K.variable(weight_decay, name='weight_decay')
self.total_steps = K.variable(total_steps, name='total_steps')
self.warmup_proportion = K.variable(warmup_proportion, name='warmup_proportion')
self.min_lr = K.variable(min_lr, name='min_lr')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.initial_weight_decay = weight_decay
self.initial_total_steps = total_steps
self.amsgrad = amsgrad def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr if self.initial_decay > 0:
lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1 if self.initial_total_steps > 0:
warmup_steps = self.total_steps * self.warmup_proportion
decay_steps = K.maximum(self.total_steps - warmup_steps, 1)
decay_rate = (self.min_lr - lr) / decay_steps
lr = K.switch(
t <= warmup_steps,
lr * (t / warmup_steps),
lr + decay_rate * K.minimum(t - warmup_steps, decay_steps),
)
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='m_' + str(i)) for (i, p) in enumerate(params)]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='v_' + str(i)) for (i, p) in enumerate(params)]
if self.amsgrad:
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='vhat_' + str(i)) for (i, p) in enumerate(params)]
else:
vhats = [K.zeros(1, name='vhat_' + str(i)) for i in range(len(params))] self.weights = [self.iterations] + ms + vs + vhats beta_1_t = K.pow(self.beta_1, t)
beta_2_t = K.pow(self.beta_2, t)
sma_inf = 2.0 / (1.0 - self.beta_2) - 1.0
sma_t = sma_inf - 2.0 * t * beta_2_t / (1.0 - beta_2_t) for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) m_corr_t = m_t / (1.0 - beta_1_t)
if self.amsgrad:
vhat_t = K.maximum(vhat, v_t)
v_corr_t = K.sqrt(vhat_t / (1.0 - beta_2_t))
self.updates.append(K.update(vhat, vhat_t))
else:
v_corr_t = K.sqrt(v_t / (1.0 - beta_2_t)) r_t = K.sqrt((sma_t - 4.0) / (sma_inf - 4.0) *
(sma_t - 2.0) / (sma_inf - 2.0) *
sma_inf / sma_t)
p_t = K.switch(sma_t >= 5, r_t * m_corr_t / (v_corr_t + self.epsilon), m_corr_t)
if self.initial_weight_decay > 0:
p_t += self.weight_decay * p
p_t = p - lr * p_t
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
new_p = p_t # Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
@property
def lr(self):
return self.learning_rate
@lr.setter
def lr(self, learning_rate):
self.learning_rate = learning_rate
def get_config(self):
config = {
'learning_rate': float(K.get_value(self.learning_rate)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'weight_decay': float(K.get_value(self.weight_decay)),
'epsilon': self.epsilon,
'amsgrad': self.amsgrad,
'total_steps': float(K.get_value(self.total_steps)),
'warmup_proportion': float(K.get_value(self.warmup_proportion)),
'min_lr': float(K.get_value(self.min_lr)),
}
base_config = super(RAdam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
#from https://www.kaggle.com/davidcairuz/nfl-neural-network-w-softmax
def crps(y_true, y_pred):
return K.mean(K.square(y_true - K.cumsum(y_pred, axis=1)), axis=1)
def get_model():
x = keras.layers.Input(shape=[X_train.shape[1]])
fc1 = keras.layers.Dense(units=450, input_shape=[X_train.shape[1]])(x)
act1 = keras.layers.PReLU()(fc1)
bn1 = keras.layers.BatchNormalization()(act1)
dp1 = keras.layers.Dropout(0.55)(bn1)
gn1 = keras.layers.GaussianNoise(0.15)(dp1)
concat1 = keras.layers.Concatenate()([x, gn1])
fc2 = keras.layers.Dense(units=600)(concat1)
act2 = keras.layers.PReLU()(fc2)
bn2 = keras.layers.BatchNormalization()(act2)
dp2 = keras.layers.Dropout(0.55)(bn2)
gn2 = keras.layers.GaussianNoise(0.15)(dp2)
concat2 = keras.layers.Concatenate()([concat1, gn2])
fc3 = keras.layers.Dense(units=400)(concat2)
act3 = keras.layers.PReLU()(fc3)
bn3 = keras.layers.BatchNormalization()(act3)
dp3 = keras.layers.Dropout(0.55)(bn3)
gn3 = keras.layers.GaussianNoise(0.15)(dp3)
concat3 = keras.layers.Concatenate([concat2, gn3])
output = keras.layers.Dense(units=199, activation='softmax')(concat2)
model = keras.models.Model(inputs=[x], outputs=[output])
return model
def train_model(X_train, y_train, X_val, y_val):
model = get_model()
model.compile(optimizer=RAdam(warmup_proportion=0.1, min_lr=1e-7), loss=crps)
er = EarlyStopping(patience=20, min_delta=1e-4, restore_best_weights=True, monitor='val_loss')
model.fit(X_train, y_train, epochs=200, callbacks=[er], validation_data=[X_val, y_val], batch_size=batch_size)
return model
from sklearn.model_selection import RepeatedKFold
rkf = RepeatedKFold(n_splits=5, n_repeats=5)
models = []
for tr_idx, vl_idx in rkf.split(X_train, y_train):
x_tr, y_tr = X_train[tr_idx], y_train[tr_idx]
x_vl, y_vl = X_train[vl_idx], y_train[vl_idx]
model = train_model(x_tr, y_tr, x_vl, y_vl)
models.append(model)
def make_pred(df, sample, env, models):
df['StadiumType'] = df['StadiumType'].apply(clean_StadiumType)
df['StadiumType'] = df['StadiumType'].apply(transform_StadiumType)
df['DefendersInTheBox_vs_Distance'] = df['DefendersInTheBox'] / df['Distance']
df['OffenseFormation'] = df['OffenseFormation'].apply(lambda x: x if x in off_form else np.nan)
df = pd.concat([df.drop(['OffenseFormation'], axis=1), pd.get_dummies(df['OffenseFormation'], prefix='Formation')], axis=1)
missing_cols = set( dummy_col ) - set( df.columns )-set('Yards')
for c in missing_cols:
df[c] = 0
df = df[dummy_col]
df.drop(['Yards'], axis=1, inplace=True)
df['Turf'] = df['Turf'].map(Turf)
df['Turf'] = df['Turf'] == 'Natural'
df['PossessionTeam'] = df['PossessionTeam'].map(map_abbr)
df['HomeTeamAbbr'] = df['HomeTeamAbbr'].map(map_abbr)
df['VisitorTeamAbbr'] = df['VisitorTeamAbbr'].map(map_abbr)
df['HomePossesion'] = df['PossessionTeam'] == df['HomeTeamAbbr']
df['Field_eq_Possession'] = df['FieldPosition'] == df['PossessionTeam']
df['HomeField'] = df['FieldPosition'] == df['HomeTeamAbbr']
df['GameClock'] = df['GameClock'].apply(strtoseconds)
df['PlayerHeight'] = df['PlayerHeight'].apply(lambda x: 12*int(x.split('-')[0])+int(x.split('-')[1]))
df['PlayerBMI'] = 703*(df['PlayerWeight']/(df['PlayerHeight'])**2)
df['TimeHandoff'] = df['TimeHandoff'].apply(lambda x: datetime.datetime.strptime(x, "%Y-%m-%dT%H:%M:%S.%fZ"))
df['TimeSnap'] = df['TimeSnap'].apply(lambda x: datetime.datetime.strptime(x, "%Y-%m-%dT%H:%M:%S.%fZ"))
df['TimeDelta'] = df.apply(lambda row: (row['TimeHandoff'] - row['TimeSnap']).total_seconds(), axis=1)
df['PlayerBirthDate'] = df['PlayerBirthDate'].apply(lambda x: datetime.datetime.strptime(x, "%m/%d/%Y"))
seconds_in_year = 60*60*24*365.25
df['PlayerAge'] = df.apply(lambda row: (row['TimeHandoff']-row['PlayerBirthDate']).total_seconds()/seconds_in_year, axis=1)
df['WindSpeed'] = df['WindSpeed'].apply(lambda x: x.lower().replace('mph', '').strip() if not pd.isna(x) else x)
df['WindSpeed'] = df['WindSpeed'].apply(lambda x: (int(x.split('-')[0])+int(x.split('-')[1]))/2 if not pd.isna(x) and '-' in x else x)
df['WindSpeed'] = df['WindSpeed'].apply(lambda x: (int(x.split()[0])+int(x.split()[-1]))/2 if not pd.isna(x) and type(x)!=float and 'gusts up to' in x else x)
df['WindSpeed'] = df['WindSpeed'].apply(str_to_float)
df['WindDirection'] = df['WindDirection'].apply(clean_WindDirection)
df['WindDirection'] = df['WindDirection'].apply(transform_WindDirection)
df['PlayDirection'] = df['PlayDirection'].apply(lambda x: x.strip() == 'right')
df['Team'] = df['Team'].apply(lambda x: x.strip()=='home')
indoor = "indoor"
df['GameWeather'] = df['GameWeather'].apply(lambda x: indoor if not pd.isna(x) and indoor in x else x)
df['GameWeather'] = df['GameWeather'].apply(lambda x: x.lower().replace('coudy', 'cloudy').replace('clouidy', 'cloudy').replace('party', 'partly').replace('clear and sunny', 'sunny and clear').replace('skies', '').replace("mostly", "").strip() if not pd.isna(x) else x)
df['GameWeather'] = df['GameWeather'].apply(map_weather)
df['IsRusher'] = df['NflId'] == df['NflIdRusher']
df['X'] = df.apply(lambda row: row['X'] if row['PlayDirection'] else 120-row['X'], axis=1)
df['Orientation'] = df.apply(lambda row: new_orientation(row['Orientation'], row['PlayDirection']), axis=1)
df['Dir'] = df.apply(lambda row: new_orientation(row['Dir'], row['PlayDirection']), axis=1)
df['YardsLeft'] = df.apply(lambda row: 100-row['YardLine'] if row['HomeField'] else row['YardLine'], axis=1)
df['YardsLeft'] = df.apply(lambda row: row['YardsLeft'] if row['PlayDirection'] else 100-row['YardsLeft'], axis=1)
df = df.sort_values(by=['PlayId', 'Team', 'IsRusher', 'JerseyNumber']).reset_index()
df = df.drop(['TimeHandoff', 'TimeSnap', 'PlayerBirthDate', 'NflId', 'NflIdRusher', 'GameId', 'PlayId', 'index', 'IsRusher', 'Team'], axis=1)
cat_features = []
for col in df.columns:
if df[col].dtype =='object':
cat_features.append(col) df = df.drop(cat_features, axis=1)
df.fillna(-999, inplace=True)
X = np.array(df[players_col]).reshape(-1, len(players_col)*22)
play_col = df.drop(players_col, axis=1).columns
X_play_col = np.zeros(shape=(X.shape[0], len(play_col)))
for i, col in enumerate(play_col):
X_play_col[:, i] = df[col][::22]
X = np.concatenate([X, X_play_col], axis=1)
X = scaler.transform(X)
y_pred = np.mean([np.cumsum(model.predict(X), axis=1) for model in models], axis=0)
yardsleft = np.array(df['YardsLeft'][::22]) for i in range(len(yardsleft)):
y_pred[i, :yardsleft[i]-1] = 0
y_pred[i, yardsleft[i]+100:] = 1
env.predict(pd.DataFrame(data=y_pred.clip(0,1),columns=sample.columns))
return y_pred
for test, sample in tqdm.tqdm(env.iter_test()):
make_pred(test, sample, env, models)
env.write_submission_file()
env.write_submission_file()

Kaggle——NFL Big Data Bowl的更多相关文章

  1. kaggle——NFL Big Data Bowl 2020 Official Starter Notebook

    Introduction In this competition you will predict how many yards a team will gain on a rushing play ...

  2. Competing in a data science contest without reading the data

    Competing in a data science contest without reading the data Machine learning competitions have beco ...

  3. 普通程序员转型AI免费教程整合,零基础也可自学

    普通程序员转型AI免费教程整合,零基础也可自学 本文告诉通过什么样的顺序进行学习以及在哪儿可以找到他们.可以通过自学的方式掌握机器学习科学家的基础技能,并在论文.工作甚至日常生活中快速应用. 可以先看 ...

  4. 《2018:skymind.ai 发布了一份非常全面的开源数据集》

    这是一份非常全面的开源数据集,你,真的不想要吗?   近期,skymind.ai 发布了一份非常全面的开源数据集.内容包括生物识别.自然图像以及深度学习图像等数据集,现机器之心将其整理如下:(内附链接 ...

  5. 从最近的比赛学习CTR/CVR

    https://zhuanlan.zhihu.com/p/35046241 包大人 深度学习炼丹劝退师 278 人赞同了该文章 从最近的比赛学习CTR/CVR 最近在玩kaggle的talking d ...

  6. kaggle竞赛分享:NFL大数据碗(上篇)

    kaggle竞赛分享:NFL大数据碗 - 上 竞赛简介 一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布: 竞赛链接 https://www ...

  7. kaggle Data Leakage

    What is Data Leakage¶ Data leakage is one of the most important issues for a data scientist to under ...

  8. [Kaggle] How to handle big data?

    上一篇,[Kaggle] How to kaggle?[方法导论] 这里再做一点进阶学习. 写在前面 "行业特征" 的重要性 Ref: Kaggle2017—1百万美金的肺癌检测竞 ...

  9. 【干货】Kaggle 数据挖掘比赛经验分享(mark 专业的数据建模过程)

    简介 Kaggle 于 2010 年创立,专注数据科学,机器学习竞赛的举办,是全球最大的数据科学社区和数据竞赛平台.笔者从 2013 年开始,陆续参加了多场 Kaggle上面举办的比赛,相继获得了 C ...

随机推荐

  1. windows driver 分配内存

    UNICODE_STRING str = {0}; wchar_t strInfo[] = {L"马上就是光棍节了"}; str.Buffer = (PWCHAR)ExAlloca ...

  2. 不要对md5file.read()计算md5值

    最近遇到的一个问题,我使用以下代码对备份文件计算MD5值: # md5file=open("%s" % outputpath, 'rb') # md5=hashlib.md5(md ...

  3. EUI库 - 容器

      eui.UILayer UILayer是Group的子类它只有一个功能,到放到场景上后,宽高永远和场景宽度一致   Group Group 是自动布局的容器基类.如果包含的子项内容太大需要滚动显示 ...

  4. prometheus配置简介

    参考网页:https://my.oschina.net/wangyunlong/blog/3060776 global: scrape_interval:             15s evalua ...

  5. Sqlserver 增删改查----删

    --我们就以院系,班级,学生来举例. create TABLE [dbo].YuanXi ( Id ,) NOT NULL,--学校id 自增量 YuanXiName varchar() null, ...

  6. 深入理解Canvas Scaler

    Canvas Scaler: 这是一个理解起来相当繁琐复杂的一个组件,但又是一个至关重要的组件,不彻底了解它,可以说对UGUI的布局和所谓的“自适应”就没有一个完整的认识. Canvas Scale指 ...

  7. PHP实现简易微信红包算法

    <?php /** * PHP实现简易的微信红包算法 * @version v1.0 * @author quetiezheng */ function getMoney($total, $pe ...

  8. 18 12 2 数据库 sql 的增删改查

    ---恢复内容开始--- 1  开始进入MySQL 的安装  https://www.cnblogs.com/ayyl/p/5978418.html  膜拜大神的博客 2  默认安装的时候     m ...

  9. ES7之async/await

    async 是 ES7 才有的与异步操作有关的关键字. async 函数返回一个 Promise 对象,可以使用 then 方法添加回调函数. async function helloAsync(){ ...

  10. CodeForces (字符串从字母a开始删除k个字母)

    You are given a string s consisting of n lowercase Latin letters. Polycarp wants to remove exactly k ...