@description@

从未来过绍兴的小D有幸参加了Winter Camp 2008,他被这座历史名城的秀从未来过绍兴的小D有幸参加了Winter Camp 2008,他被这座历史名城的秀丽风景所吸引,强烈要求游览绍兴及其周边的所有景点。

主办者将绍兴划分为N行M列(NXM)个方块,景点含于方块内,且一个方块至多有一个景点。无景点的方块视为路。

为了保证安全与便利,主办方依据路况和治安状况,在非景点的一些方块内安排不同数量的志愿者:在景点内聘请导游(导游不是志愿者)。在选择旅游方案时,保证任意两个景点之间,存在一条路径,在这条路径所经过的每一个方块都有志愿者或者该方块为景点。既能满足选手们游览的需要,又能够让志愿者的总数最少。

现在,希望你能够帮助主办方找到一种最好的安排方案。

原题传送门。

@solution@

斯坦纳树经典题。

斯坦纳树的定义是:给定一个图与 k 个特殊点,求将这 k 个特殊点连通的最小生成树。

当 k = 点数时,就是常见的最小生成树的定义。

状压 dp:记 dp[i][s] 表示当前点为 i,已经包含了 k 个特殊点的集合为 s,最小连通代价。

第一类转移:dp[i][s] = min{dp[i][t] + dp[i][s xor t]},即两个集合取并集。

第二类转移:dp[i][s] = min{dp[j][s] + dis(i, j)},即任意加一条边。

正确性很显然,因为每一种可行方案都会被上面的过程考虑到。

第二类转移带环,但是注意到这个转移很像最短路的 “松弛” 操作,于是我们直接写个 spfa 即可。

时间复杂度(如果把 spfa 算作 O(nm) 的上界的话)为 O(n*3^k + nm*2^k)。

本题因为是点权,为了不使第一种转移出现重复,dp[i][s] 不包含 i 的点权。

@accepted code@

#include <queue>
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std; typedef pair<int, int> pii;
#define mp make_pair
#define fi first
#define se second const int INF = (1 << 30);
const int dx[] = {0, 1, -1, 0, 0};
const int dy[] = {0, 0, 0, -1, 1}; bool inq[10][10];
int A[10][10], id[10][10], N, M, K, S;
int dp[10][10][1 << 10], pre[10][10][1 << 10];
queue<pii>que;
void run(int s) {
for(int i=0;i<N;i++)
for(int j=0;j<M;j++)
que.push(mp(i, j)), inq[i][j] = true;
while( !que.empty() ) {
pii p = que.front(); que.pop(); inq[p.fi][p.se] = false;
for(int i=1;i<=4;i++) {
int x0 = p.fi + dx[i], y0 = p.se + dy[i];
if( x0 >= N || y0 >= M || x0 < 0 || y0 < 0 ) continue;
if( dp[x0][y0][s] > dp[p.fi][p.se][s] + A[p.fi][p.se] ) {
dp[x0][y0][s] = dp[p.fi][p.se][s] + A[p.fi][p.se];
pre[x0][y0][s] = i;
if( !inq[x0][y0] ) {
que.push(mp(x0, y0));
inq[x0][y0] = true;
}
}
}
}
}
void solve() {
for(int s=1;s<S;s++) {
for(int i=0;i<N;i++)
for(int j=0;j<M;j++) {
int t = s & (s - 1);
while( t ) {
if( dp[i][j][s] > dp[i][j][t] + dp[i][j][s ^ t] ) {
dp[i][j][s] = dp[i][j][t] + dp[i][j][s ^ t];
pre[i][j][s] = -t;
}
t = s & (t - 1);
}
}
run(s);
}
}
bool tag[10][10];
void get(int x, int y, int s) {
tag[x][y] = true;
if( pre[x][y][s] > 0 )
get(x - dx[pre[x][y][s]], y - dy[pre[x][y][s]], s);
else if( pre[x][y][s] < 0 ) {
pre[x][y][s] = -pre[x][y][s];
get(x, y, pre[x][y][s]), get(x, y, s^pre[x][y][s]);
}
} int main() {
scanf("%d%d", &N, &M);
for(int i=0;i<N;i++)
for(int j=0;j<M;j++) {
scanf("%d", &A[i][j]);
if( A[i][j] == 0 ) id[i][j] = (K++);
}
S = (1 << K);
for(int i=0;i<N;i++)
for(int j=0;j<M;j++) {
for(int s=0;s<S;s++) dp[i][j][s] = INF;
if( A[i][j] == 0 ) dp[i][j][1 << id[i][j]] = 0;
}
solve();
int x, y, ans = INF;
for(int i=0;i<N;i++)
for(int j=0;j<M;j++)
if( ans > dp[i][j][S - 1] + A[i][j] )
ans = dp[i][j][S - 1] + A[i][j], x = i, y = j;
printf("%d\n", ans);
get(x, y, S - 1);
for(int i=0;i<N;i++) {
for(int j=0;j<M;j++) {
if( tag[i][j] ) {
if( A[i][j] == 0 )
putchar('x');
else putchar('o');
}
else putchar('_');
}
puts("");
}
}
/*
8 8
1 4 1 3 4 2 4 1
4 3 1 2 0 1 2 3
3 2 1 3 0 3 1 2
2 6 5 0 2 4 1 0
5 1 2 1 3 4 2 5
5 1 3 1 5 0 1 4
5 0 6 1 4 5 3 4
0 2 2 2 3 4 1 1
*/

@details@

关于第二类转移,其实也可以用 floyd 先预处理出所有点对的最短路,然后直接点对两两 O(n^2) 转移。

因为 spfa 的复杂度上界是 O(NM),对于 M 比较大的稠密图用 floyd 更快。

当然对于本题这种网格图 spfa 的复杂度和 floyd 没差,spfa 的常数说不定还要小一些。

@bzoj - 2595@ 游览计划的更多相关文章

  1. 【BZOJ 2595】2595: [Wc2008]游览计划 (状压DP+spfa,斯坦纳树?)

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1572  Solved: 7 ...

  2. 【BZOJ】【2595】【WC2008】游览计划

    Orz zky神犇http://blog.csdn.net/iamzky/article/details/42029921 spfa的灵活应用!(好像是求了一个叫做斯坦纳树的东西……) o(︶︿︶)o ...

  3. 【BZOJ-2595】游览计划 斯坦纳树

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1518  Solved: 7 ...

  4. 【LG4294】[WC2008]游览计划

    [LG4294][WC2008]游览计划 题面 洛谷 bzoj 题解 斯坦纳树板子题. 斯坦纳树的总结先留个坑. 代码 #include <iostream> #include <c ...

  5. [bzoj2595][WC2008]游览计划/[bzoj5180][Baltic2016]Cities_斯坦纳树

    游览计划 bzoj-2595 wc-2008 题目大意:题目链接.题目连接. 注释:略. 想法:裸题求斯坦纳树. 斯坦纳树有两种转移方式,设$f[s][i]$表示联通状态为$s$,以$i$为根的最小代 ...

  6. BZOJ_2595_[Wc2008]游览计划_斯坦纳树

    BZOJ_2595_[Wc2008]游览计划_斯坦纳树 题意: 分析: 斯坦纳树裸题,有几个需要注意的地方 给出矩阵,不用自己建图,但枚举子集转移时会算两遍,需要减去当前点的权值 方案记录比较麻烦,两 ...

  7. [WC2008]游览计划 解题报告

    [WC2008]游览计划 斯坦纳树板子题,其实就是状压dp 令\(dp_{i,s}\)表示任意点\(i\)联通关键点集合\(s\)的最小代价 然后有转移 \[ dp_{i,S}=\min_{T\in ...

  8. bzoj2595 / P4294 [WC2008]游览计划

    P4294 [WC2008]游览计划 斯坦纳树 斯坦纳树,是一种神奇的树.它支持在一个连通图上求包含若干个选定点的最小生成树. 前置算法:spfa+状压dp+dfs(大雾) 我们设$f[o][P]$为 ...

  9. 【BZOJ2595】 [Wc2008]游览计划

    BZOJ2595 [Wc2008]游览计划 Solution 考虑这是一个最小费用连通性的问题,既然大家都说这是什么斯坦纳树那就是的吧... 所以我们肯定可以这样设一个dp状态: \(dp_{i,j, ...

随机推荐

  1. Kubernetes fabric8 JavaAPI

    Kubernetes fabric8 JavaAPI 一.依赖准备 <dependency> <groupId>io.fabric8</groupId> <a ...

  2. dede列表页限制标题长度

    {dede:list pagesize ='10' titlelen="45"} <li><a href="[field:arcurl/]"& ...

  3. JAVA定义变量和基础的数据类型和关键字

      标识符语法 1)java中定义标识符格式以字母,数字,下划线,$符合组成,不能以数字开头,且不能为  java中的关键字.         2)标识符意义要明确,不要乱起         3)标识 ...

  4. Python Redis常用操作(持续更新)

    目录 1.Redis简介 2.Redis部署 3.Redis API应用 4.String操作 1.Redis简介 redis是业界主流的key-value,nosql数据库之一.和Memcached ...

  5. eatwhatApp开发实战(十一)

    之前我们实现了点击item项跳转activity,接下来我们再其基础上添加参数的传递. 在MainActivity里面的onItemClick()中: String name = shopList.g ...

  6. [Android应用开发] 04.页面跳转和数据传输

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...

  7. Gauge框架在JS中的简单应用

    gauge框架简介 Gauge是一个轻量级的跨平台测试自动化工具. gauge安装[Win10 64位下测试] [百度网盘链接]https://pan.baidu.com/s/1bidE34gLLrS ...

  8. Spring IoC componet-scan 节点解析详解

    前言 我们在了解 Spring 容器的扩展功能 (ApplicationContext) 之前,先介绍下 context:componet-scan 标签的解析过程,其作用很大是注解能生效的关键所在. ...

  9. GitHub 热点速览 Vol.22:如何打造超级技术栈

    作者:HelloGitHub-小鱼干 摘要:build-your-own-x,无论是新手还是老手,这都是一个指向标.方向有了,剩下就是时间和实践的事情,收集了大量可用于软件和 Web 开发的 Publ ...

  10. MySQL国内镜像下载地址

    最近重新下载MySQL发现官网下载速度不是一般的慢,官网下载要几个钟而且一不注意就被取消下载了,实在受不了 可以使用sohu的镜像:http://mirrors.sohu.com/mysql/MySQ ...