python 一直在进行并发编程的优化, 比较熟知的是使用 thread 模块多线程和 multiprocessing 多进程,后来慢慢引入基于 yield 关键字的协程。 而近几个版本,python 对于协程的写法进行了大幅的优化,很多之前的协程写法不被官方推荐了。如果你之前了解过 python 协程,你应该看看最新的用法。

并发、并行、同步和异步

并发指的是 一个 CPU 同时处理多个程序,但是在同一时间点只会处理其中一个。并发的核心是:程序切换。

但是因为程序切换的速度非常快,1 秒钟内可以完全很多次程序切换,肉眼无法感知。

并行指的是多个 CPU 同时处理多个程序,同一时间点可以处理多个。

同步:执行 IO 操作时,必须等待执行完成才得到返回结果。
异步:执行 IO 操作时,不必等待执行就能得到返回结果。

协程,线程和进程的区别

多进程通常利用的是多核 CPU 的优势,同时执行多个计算任务。每个进程有自己独立的内存管理,所以不同进程之间要进行数据通信比较麻烦。

多线程是在一个 cpu 上创建多个子任务,当某一个子任务休息的时候其他任务接着执行。多线程的控制是由 python 自己控制的。 子线程之间的内存是共享的,并不需要额外的数据通信机制。但是线程存在数据同步问题,所以要有锁机制。

协程的实现是在一个线程内实现的,相当于流水线作业。由于线程切换的消耗比较大,所以对于并发编程,可以优先使用协程。

。。。
这是对比图:

协程的基础使用

这是 python 3.7 里面的基础协程用法,现在这种用法已经基本稳定,不太建议使用之前的语法了。

import asyncio
import time async def visit_url(url, response_time):
"""访问 url"""
await asyncio.sleep(response_time)
return f"访问{url}, 已得到返回结果" start_time = time.perf_counter()
task = visit_url('http://wangzhen.com', 2)
asyncio.run(task)
print(f"消耗时间:{time.perf_counter() - start_time}")
  • 1, 在普通的函数前面加 async 关键字;
  • 2,await 表示在这个地方等待子函数执行完成,再往下执行。(在并发操作中,把程序控制权教给主程序,让他分配其他协程执行。) await 只能在带有 async 关键字的函数中运行。
  • 3, asynico.run() 运行程序
  • 4, 这个程序消耗时间 2s 左右。

增加协程

再添加一个任务:

task2 = visit_url('http://another.com', 3)
asynicio.run(task2)

这 2 个程序一共消耗 5s 左右的时间。并没有发挥并发编程的优势。如果是并发编程,这个程序只需要消耗 3s,也就是task2的等待时间。要想使用并发编程形式,需要把上面的代码改一下。

import asyncio
import time async def visit_url(url, response_time):
"""访问 url"""
await asyncio.sleep(response_time)
return f"访问{url}, 已得到返回结果" async def run_task():
"""收集子任务"""
task = visit_url('http://wangzhen.com', 2)
task_2 = visit_url('http://another', 3)
await asyncio.run(task)
await asyncio.run(task_2) asyncio.run(run_task())
print(f"消耗时间:{time.perf_counter() - start_time}")

asyncio.gather 会创建 2 个子任务,当出现 await 的时候,程序会在这 2 个子任务之间进行调度。

create_task

创建子任务除了可以用 gather 方法之外,还可以使用 asyncio.create_task 进行创建。

async def run_task():
coro = visit_url('http://wangzhen.com', 2)
coro_2 = visit_url('http://another.com', 3) task1 = asyncio.create_task(coro)
task2 = asyncio.create_task(coro_2) await task1
await task2

协程的主要使用场景

协程的主要应用场景是 IO 密集型任务,总结几个常见的使用场景:

  • 网络请求,比如爬虫,大量使用 aiohttp
  • 文件读取, aiofile
  • web 框架, aiohttp, fastapi
  • 数据库查询, asyncpg, databases

进一步学习方向(接下来的文章)

  • 什么时候用协程,什么时候用多线程,什么时候用多进程
  • future 对象
  • asyncio 的底层 api
  • loop
  • trio 第三方库用法

参考文献

python教程:使用 async 和 await 协程进行并发编程的更多相关文章

  1. python——asyncio模块实现协程、异步编程

    我们都知道,现在的服务器开发对于IO调度的优先级控制权已经不再依靠系统,都希望采用协程的方式实现高效的并发任务,如js.lua等在异步协程方面都做的很强大. Python在3.4版本也加入了协程的概念 ...

  2. python 异步IO(syncio) 协程

    python asyncio 网络模型有很多中,为了实现高并发也有很多方案,多线程,多进程.无论多线程和多进程,IO的调度更多取决于系统,而协程的方式,调度来自用户,用户可以在函数中yield一个状态 ...

  3. python 异步IO( asyncio) 协程

    python asyncio 网络模型有很多中,为了实现高并发也有很多方案,多线程,多进程.无论多线程和多进程,IO的调度更多取决于系统,而协程的方式,调度来自用户,用户可以在函数中yield一个状态 ...

  4. python爬虫---单线程+多任务的异步协程,selenium爬虫模块的使用

    python爬虫---单线程+多任务的异步协程,selenium爬虫模块的使用 一丶单线程+多任务的异步协程 特殊函数 # 如果一个函数的定义被async修饰后,则该函数就是一个特殊的函数 async ...

  5. Python之线程、进程和协程

    python之线程.进程和协程 目录: 引言 一.线程 1.1 普通的多线程 1.2 自定义线程类 1.3 线程锁 1.3.1 未使用锁 1.3.2 普通锁Lock和RLock 1.3.3 信号量(S ...

  6. python自动化开发学习 进程, 线程, 协程

    python自动化开发学习 进程, 线程, 协程   前言 在过去单核CPU也可以执行多任务,操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换任务2,任务2执行0.01秒,在切换到任务3,这 ...

  7. python day 20: 线程池与协程,多进程TCP服务器

    目录 python day 20: 线程池与协程 2. 线程 3. 进程 4. 协程:gevent模块,又叫微线程 5. 扩展 6. 自定义线程池 7. 实现多进程TCP服务器 8. 实现多线程TCP ...

  8. 11.python3标准库--使用进程、线程和协程提供并发性

    ''' python提供了一些复杂的工具用于管理使用进程和线程的并发操作. 通过应用这些计数,使用这些模块并发地运行作业的各个部分,即便是一些相当简单的程序也可以更快的运行 subprocess提供了 ...

  9. asyncio协程与并发

    并发编程 Python的并发实现有三种方法. 多线程 多进程 协程(生成器) 基本概念 串行:同时只能执行单个任务 并行:同时执行多个任务 在Python中,虽然严格说来多线程与协程都是串行的,但其效 ...

随机推荐

  1. hdu1455 拼木棍(经典dfs)

    给定木棍序列,求解能将木棍拼成相同长度的数根长木棍的情况下长木棍长度的最小值. /*hdu1455dfs */ #include<bits/stdc++.h> using namespac ...

  2. [IROS 2018]Semantic Mapping with Simultaneous Object Detection and Localization

      论文地址:https://arxiv.org/abs/1810.11525   论文视频:https://www.youtube.com/watch?v=W-6ViSlrrZg​www.youtu ...

  3. FtpServer穿透内网访问配置踩笔记

    FtpServer穿透内网访问配置踩笔记 引言 FtpServer是服务器文件远程管理常用方式. 以前在局域网配置Ftp服务器以及使用公网上的Ftp服务均未碰到问题,固未对Ftp传输进行深入了解. 然 ...

  4. Selenium系列(十一) - 针对两种上传文件方式的实现方案

    如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识, ...

  5. Pandas和Numpy的一些金融相关的操作(一)

    Pandas和Numpy的一些金融相关的操作 给定一个净值序列,求出最大回撤 # arr是一个净值的np.ndarray i = np.argmax( (np.maximum.acumulate(ar ...

  6. 使用scikit-learn解决文本多分类问题(附python演练)

    来源 | TowardsDataScience 译者 | Revolver 在我们的商业世界中,存在着许多需要对文本进行分类的情况.例如,新闻报道通常按主题进行组织; 内容或产品通常需要按类别打上标签 ...

  7. 百道Python面试题实现,搞定Python编程就靠它

    对于一般的机器学习求职者而言,最基础的就是掌握 Python 编程技巧,随后才是相关算法或知识点的掌握.在这篇文章中,我们将介绍一个 Python 练习题项目,它从算法练习题到机试实战题提供了众多问题 ...

  8. Python学习笔记:函数和变量详解

    一.面向对象:将客观世界的事物抽象成计算机中的数据结构 类:用class定义,这是当前编程的重点范式,以后会单独介绍. 二.函数编程:逻辑结构化和过程化的一种编程方法 1.函数-->用def定义 ...

  9. CodeForces 280B(枚举 + 单调栈应用)

    题目链接 思路如下 这题恶心的枚举任意区间的 最大值及次最大值 ,正常的操作是,是很难实现的,但偏偏有个 单调栈这个动西,能够完成这个任务,跟单调队列相似,有单调 递增.递减的栈,这一题我们需要维护的 ...

  10. 新建jsp文件,The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path错误解决方法

    新建一个jsp文件后,有一个错误,The superclass "javax.servlet.http.HttpServlet" was not found on the Java ...