先放知识点:

莫比乌斯反演

卢卡斯定理求组合数

乘法逆元

快速幂取模

GCD of Sequence

 Alice is playing a game with Bob.
Alice shows N integers a 1, a 2, …, a N, and M, K. She says each integers 1 ≤ a i ≤ M.
And now Alice wants to ask for each d = 1 to M, how many different sequences b 1, b 2, …, b N. which satisfies :
1. For each i = 1…N, 1 ≤ b[i] ≤ M
2. gcd(b 1, b 2, …, b N) = d
3. There will be exactly K position i that ai != bi (1 ≤ i ≤ n) Alice thinks that the answer will be too large. In order not to annoy Bob, she only wants to know the answer modulo 1000000007.Bob can not solve the problem. Now he asks you for HELP!
Notes: gcd(x 1, x 2, …, x n) is the greatest common divisor of x 1, x 2, …, x n

Input

The input contains several test cases, terminated by EOF.
The first line of each test contains three integers N, M, K. (1 ≤ N, M ≤ 300000, 1 ≤ K ≤ N)
The second line contains N integers: a 1, a 2, …, a n (1 ≤ a i ≤ M) which is original sequence.

Output

For each test contains 1 lines :
The line contains M integer, the i-th integer is the answer shows above when d is the i-th number.

Sample Input

3 3 3
3 3 3
3 5 3
1 2 3
1
2
3
4

Sample Output

7 1 0
59 3 0 1 1
1
2

Hint

In the first test case :
when d = 1, {b} can be :
(1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 2, 2)
(2, 1, 1)
(2, 1, 2)
(2, 2, 1)
when d = 2, {b} can be :
(2, 2, 2)
And because {b} must have exactly K number(s) different from {a}, so {b} can't be (3, 3, 3), so Answer = 0







卢卡斯求组合数是log级别的所以没问题

#include <bits/stdc++.h>
using namespace std;
const int maxn = 310000;
const int mod = 1000000007;
int n, m, k;
int prime[maxn], tot, mu[maxn]; //莫比乌斯函数
bool vis[maxn];
long long fac[maxn], rev[maxn]; //乘法逆元,和卢卡斯定理
long long F[maxn], f[maxn]; //莫比乌斯反演
int a[maxn];
int cnt[maxn]; //对于d,有多少a[i]是d的倍数
long long extend_gcd(long long a, long long b, long long &x, long long &y)
{
//扩展欧几里得
if (a == 0 && b == 0)
return -1;
if (b == 0)
{
x = 1;
y = 0;
return a;
}
long long d = extend_gcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
long long mod_rev(long long a, long long n) //乘法逆元lucas用
{
long long x, y;
long long d = extend_gcd(a, n, x, y);
if (d == 1)
return (x % n + n) % n;
else
return -1;
} void init() //线性筛求莫比乌斯函数
{
tot = 0;
mu[1] = 1;
for (int i = 2; i < maxn; i++)
{
if (!vis[i])
{
prime[tot++] = i;
mu[i] = -1;
}
for (int j = 0; j < tot; j++)
{
if (i * prime[j] >= maxn)
break;
vis[i * prime[j]] = 1;
if (i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
fac[0] = rev[0] = 1;
for (int i = 1; i < maxn; i++)
{
fac[i] = fac[i - 1] * i % mod;
//预处理卢卡斯定理参数
rev[i] = mod_rev(fac[i], mod);
//预处理逆元
}
} long long quick_mod(long long a, long long b)
{
long long ans = 1;
a %= mod;
while (b)
{
if (b & 1)
{
ans = ans * a % mod;
b--;
}
b >>= 1;
a = a * a % mod;
}
return ans;
} long long Lucas(long long m, long long n)
{
if (n == 0)
return 1;
long long ans = fac[m] * rev[n] % mod * rev[m - n] % mod;
return ans;
} int main()
{
init();
while (scanf("%d%d%d", &n, &m, &k) != EOF)
{
memset(cnt, 0, sizeof cnt);
memset(f, 0, sizeof f);
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
cnt[a[i]]++;
}
for (int i = 1; i <= m; i++)
for (int j = i + i; j <= m; j += i)
cnt[i] += cnt[j]; for (int i = 1; i <= m; i++)
{
long long p = cnt[i];
if (k - n + p < 0)
{
F[i] = 0;
continue;
}
F[i] = Lucas(p, k - n + p) * quick_mod(m / i - 1, k - n + p) % mod * quick_mod(m / i, n - p) % mod;
} for (int i = 1; i <= m; i++)
{
if (F[i] == 0)
f[i] = 0; else
for (int j = i; j <= m; j += i)
{
f[i] += mu[j / i] * F[j];
f[i] %= mod;
}
printf("%lld", (f[i] + mod) % mod);
if (i != m)
printf(" ");
}
printf("\n");
}
return 0;
}

数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)的更多相关文章

  1. HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)

    题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...

  2. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  3. hdu 1097 A hard puzzle 快速幂取模

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A ha ...

  4. 杭电 2817 A sequence of numbers【快速幂取模】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 解题思路:arithmetic or geometric sequences 是等差数列和等比数 ...

  5. HDU 4675 GCD of Sequence (2013多校7 1010题 数学题)

    GCD of Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)T ...

  6. 数学--数论--HDU 5382 GCD?LCM?(详细推导,不懂打我)

    Describtion First we define: (1) lcm(a,b), the least common multiple of two integers a and b, is the ...

  7. 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑

    http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...

  8. HDU 4675 GCD of Sequence(莫比乌斯反演 + 打表注意事项)题解

    题意: 给出\(M\)和\(a数组\),询问每一个\(d\in[1,M]\),有多少组数组满足:正好修改\(k\)个\(a\)数组里的数使得和原来不同,并且要\(\leq M\),并且\(gcd(a_ ...

  9. HDU 4675 GCD of Sequence(容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4675 题意:给出n,m,K,一个长度为n的数列A(1<=A[i]<=m).对于d(1< ...

随机推荐

  1. 路由与交换,cisco路由器配置,静态路由

    网络是一个大型的拓扑结构,在路由表中,最重要的是管理距离和度量值 管理距离 管理距离用来确定路由的优先级.管理距离的范围是0-255之间的整数值.值越低代表优先级越高.0代表最高优先级.并且只有直连路 ...

  2. Linux基础管理篇,软件管理程序,yum与rpm

    一.RPM 一般来说,rpm类型的文件在安装的时候,会检测当前的系统是否满足当前软件需要的环境.若符合,则该软件就会被安装,并且会把软件的相关信息写入/var/lib/rpm/目录下的数据库文件中. ...

  3. 彻底卸载----LoadRunner

    保证所有LoadRunner的相关进程(包括Controller.VuGen.Analysis和Agent Process)全部关闭: 备份好LoadRunner安装目录下测试脚本,这些脚本一般存放在 ...

  4. shell命令-while语句

    loop=1 while [ "$loop" -le 10 ] do echo "loop:$loop" loop=$(($loop+2)) done

  5. [编译] 7、在Linux下搭建安卓APP的开发烧写环境(makefile版-gradle版)—— 在Linux上用命令行+VIM开发安卓APP

    April 18, 2020 6:54 AM - BEAUTIFULZZZZ 目录 0 前言 1 gradle 安装配置 1.1 卸载系统默认装的gradle 1.2 下载对应版本的二进制文件 1.3 ...

  6. spring 管理事务配置时,结果 报错: No Hibernate Session bound to thread, and configuration does not allow creation of non-transactional one here这个异常

    java.lang.IllegalStateException: No Hibernate Session bound to thread, and configuration does not al ...

  7. 类 文件 右下角呈现 红色小圆圈,里面有一个J 标记

    intellj(idea) 项目中类 文件 右下角呈现 红色小圆圈,里面有一个J 标记,表明此为 未设置为源文件,没有编译,本来应该是属于源文件的,结果现在没有被标记为源文件,也就没法编译了.

  8. AJ学IOS(16)UI之XIB自定义Cell实现团购UI

    AJ分享,必须精品 先看效果图 自定义Cell 本次主要是自定义Cell的学习 实现自定义Cell主要有三种方法:按照使用的频繁度排序: XIB > 纯代码 > StoryBoard XI ...

  9. 区块链 Hyperledger Fabric v1.0.0 环境搭建

    前言:最近项目涉及到超级账本,在有些理论知识的基础上,需要整一套环境来. 这是一个特别要注意的事情,笔者之前按照网络上推荐,大部分都是推荐ubuntu系统的,于是下载Ubuntu系统(16.04.5和 ...

  10. App 开发中判断 ios 和 andriod 常用方法便于修复在两类机型样式不一样等缺陷

    判断安卓, ios