#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=100+5; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int cur[maxn];
bool vis[maxn];
int d[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;i++) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );
m=edges.size();
G[from].push_back( m-2 );
G[to].push_back(m-1);
} bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x= Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a-=f;
if(a==0) break;
}
}
return flow;
} int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans+= DFS(s,INF);
}
return ans;
}
}DC; int main()
{
int n,np,nc,m;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)==4)
{
DC.init(n+2,0,n+1);
for(int i=0;i<m;i++)
{
int u,v,w;
scanf(" (%d,%d)%d",&u,&v,&w);
++u,++v;
DC.AddEdge(u,v,w);
}
for(int i=0;i<np;i++)
{
int u,w;
scanf(" (%d)%d",&u,&w);
++u;
DC.AddEdge(0,u,w);
}
for(int i=0;i<nc;i++)
{
int u,w;
scanf(" (%d)%d",&u,&w);
++u;
DC.AddEdge(u,n+1,w);
}
printf("%d\n",DC.max_flow());
}
return 0;
}

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

网络流--最大流--POJ 1459 Power Network的更多相关文章

  1. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  2. poj 1459 Power Network

    题目连接 http://poj.org/problem?id=1459 Power Network Description A power network consists of nodes (pow ...

  3. POJ 1459 Power Network(网络流 最大流 多起点,多汇点)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 22987   Accepted: 12039 D ...

  4. poj 1459 Power Network : 最大网络流 dinic算法实现

    点击打开链接 Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 20903   Accepted:  ...

  5. 2018.07.06 POJ 1459 Power Network(多源多汇最大流)

    Power Network Time Limit: 2000MS Memory Limit: 32768K Description A power network consists of nodes ...

  6. poj 1459 Power Network【建立超级源点,超级汇点】

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 25514   Accepted: 13287 D ...

  7. POJ 1459 Power Network 最大流(Edmonds_Karp算法)

    题目链接: http://poj.org/problem?id=1459 因为发电站有多个,所以需要一个超级源点,消费者有多个,需要一个超级汇点,这样超级源点到发电站的权值就是发电站的容量,也就是题目 ...

  8. POJ 1459 Power Network(网络最大流,dinic算法模板题)

    题意:给出n,np,nc,m,n为节点数,np为发电站数,nc为用电厂数,m为边的个数.      接下来给出m个数据(u,v)z,表示w(u,v)允许传输的最大电力为z:np个数据(u)z,表示发电 ...

  9. POJ - 1459 Power Network(最大流)(模板)

    1.看了好久,囧. n个节点,np个源点,nc个汇点,m条边(对应代码中即节点u 到节点v 的最大流量为z) 求所有汇点的最大流. 2.多个源点,多个汇点的最大流. 建立一个超级源点.一个超级汇点,然 ...

随机推荐

  1. Linux网络安全篇,进入SELinux的世界(三)

    SELinux防火墙配套的服务 一.auditd 1.基本功能 将详细信息写入到 /var/log/audit/audit.log文件 2.设置开机自动启动 chkconfig --list audi ...

  2. Java第十五天,泛型

    一.定义 泛型是一种未知的数据类型,即当我们不知道该使用哪种数据类型的时候,可以使用泛型. 泛型的本质是为了  参数化 类型(在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型) ...

  3. 十年测试老鸟告诉你--自动化测试选JAVA还是选Python--写给还在迷茫中的朋友

    一.前言 Python和Java哪个更适合做自动化测试?这是很多测试工程师从功能跨入自动化纠结的问题,今天测试老鸟来带大家详细分析一下!写给还在迷茫中的朋友! 首先可以确认的是提出这个问题的肯定是一个 ...

  4. NonRegisteringDriver造成的内存频繁FullGc

    某天上服务器看了下gc情况,发现状况不对,启动了才2天的服务器发生了360次fullgc,这个频率肯定高了 说明 S0C.S1C.S0U.S1U:Survivor 0/1区容量(Capacity)和使 ...

  5. sql server临时删除/禁用非聚集索引并重新创建加回/启用的简便编程方法研究对比

    前言: 由于新型冠状病毒影响,博主(zhang502219048)在2020年1月份从广东广州工作地回到广东揭阳产业转移工业园磐东街道(镇里有阳美亚洲玉都.五金之乡,素以“金玉”闻名)老家后,还没过去 ...

  6. for循环,for…in循环,forEach循环的区别

    for循环,for…in循环,forEach循环的区别for循环通关for循环,生成所有的索引下标for(var i = 0 ; i <= arr.length-1 ; i++){ 程序内容 } ...

  7. Jenkins 批量创建任务的三种方法

    最近,要搭建多套测试环境,需要把 Jenkins 中 dev 视图下的所有任务批量复制到 sit 等视图下. 说明 Jenkins 任务名称规则为:[测试环境标识]-[工程名称],如:dev-daod ...

  8. delphi 捕捉全局异常错误的方法

    private     { Private declarations }   public   procedure GlobalExceptionHandler(Sender: TObject; E: ...

  9. .NET Core 发布时去掉多余的语言包文件夹

    用 .NET Core 3.x 作为目标框架时发布完之后,会发现多了很多语言包文件夹,类似于: 有时候,不想要生成这些语言包文件夹,需要稍微配置一下. 在 PropertyGroup 节点中添加如下的 ...

  10. Navicat自动备份数据库

    @ 目录 Navicat自动备份数据库 备份与还原 修改备份位置 MySQL:5.7 Navicat:11 Windows10 重要数据库的定时备份是非常重要的,使用Navicat可以非常方便快捷地自 ...