04-A的LU分解
一、矩阵$AB$的逆
$(AB)^{-1}=B^{-1}A^{-1}$,顺序正好相反
二、$A=LU$
如矩阵:
$\left[\begin{array}{ll}{2} & {1} \\ {8} & {7}\end{array}\right]$ =>消元=>$\left[\begin{array}{ll}{2} & {1} \\ {0} & {3}\end{array}\right]$
按照我们在第二讲所知,原始矩阵借助$E_{21}$可以实现矩阵的消元,即$E_{21}$ * $A$ = $U$:
$\left[\begin{array}{ll}{1} & {0} \\ {-4} & {1}\end{array}\right] * \left[\begin{array}{ll}{2} & {1} \\ {8} & {7}\end{array}\right]$ = $\left[\begin{array}{ll}{2} & {1} \\ {0} & {3}\end{array}\right]$
注意:这里是2 * 2 矩阵,所以只需要一个初等矩阵相乘即可,若是更大的方阵,则每次消元都需要初等矩阵左乘
而我们知道$A=LU$,那么这个$L$是什么呢?
$A=LU$
$E_{21}A=U$
第二个式子左右同时乘以$E_{21} ^{-1}$:
$A=E_{21} ^{-1}U$
所以这个$L$就是$E_{21} ^{-1}$,初等矩阵的逆矩阵好求,就是初等矩阵变一下符号而已(仅仅因为这里是2*2矩阵,如果3*3或者更大的矩阵,就不是这么简单了):
$L$=$E_{21} ^{-1}$=$\left[\begin{array}{ll}{1} & {0} \\ {4} & {1}\end{array}\right]$
这里只是以简单的2*2矩阵为例进行了讲解,$L$和$U$矩阵表示了下三角矩阵和上三角矩阵,过程如下:
$\left[\begin{array}{ll}{2} & {1} \\ {8} & {7}\end{array}\right]=\left[\begin{array}{ll}{1} & {0} \\ {4} & {1}\end{array}\right]\left[\begin{array}{ll}{2} & {1} \\ {0} & {3}\end{array}\right]$
即:$A = LU$
有时候会把主元摘出来:$A = LDU$
$\left[\begin{array}{ll}{2} & {1} \\ {8} & {7}\end{array}\right] = \left[\begin{array}{ll}{1} & {0} \\ {4} & {1}\end{array}\right]\left[\begin{array}{ll}{2} & {0} \\ {0} & {3}\end{array}\right]\left[\begin{array}{ll}{1} & {1/2} \\ {0} & {1}\end{array}\right]$
我们不能只停留在简单的2 * 2矩阵上,下面我们来处理更大的矩阵,比如3 * 3 矩阵:
$E_{32} E_{31} E_{21} A=U$(消元过程假设不需要进行行交换)
$A= E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} U$
所以:$L= E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}$
实例:
上面的求$L$的过程看起来很麻烦,先要计算三个消元矩阵,然后计算他们的逆,反顺序相乘,其实不然
对于初等矩阵,之前讲到过,它的逆只要把变换再还回去就是,比如矩阵:
$\left[\begin{array}{lll}{1} & {0} & {0} \\ {2} & {1} & {0} \\ {0} & {0} & {1}\end{array}\right]$
表示将某矩阵的第一行乘2加到第二行上(如果用它右乘某矩阵的话),那么这个操作的逆操作就是从第二行减去2倍的第一行就是了,所以它的逆矩阵就是:
$\left[\begin{array}{ccc}{1} & {0} & {0} \\ {-2} & {1} & {0} \\ {0} & {0} & {1}\end{array}\right]$
三、后半节需要再理解一下
04-A的LU分解的更多相关文章
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- LU分解,Javascript代码
///A 为矩阵,这里写成一维数组,如 [1],[1,2,3,4] function GetLU(a) { var n = a.length;//矩阵的总数据数目 var s = Math.sqrt( ...
- matlab实现高斯消去法、LU分解
朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...
- LU分解(2)
接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法.这里需要了解lapapck中的一些函数.lapack中有一个函数名为gaxpy,所对应的矩阵计算公式 ...
- LU分解(1)
1/6 LU 分解 LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU ...
- MATLAB矩阵的LU分解及在解线性方程组中的应用
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...
- 线性代数笔记10——矩阵的LU分解
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...
- 矩阵分解---QR正交分解,LU分解
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...
- 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...
- 矩阵LU分解分块算法实现
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...
随机推荐
- Win7,win10(部分机型) 安装appscan9.0.3.10(可升级)实操流程
Win10部分机型不能很好的兼容appscan,建议使用者用win7系统安装appscan 写于:2018.12.2 IBM Security AppScan Standard 可通过自动执行应用安全 ...
- 将数据库中带出的列,在gridview中影藏起来
前台增加事件:OnRowCreated="GridView1_RowCreated" protected void GridView1_RowCreated(object send ...
- spring boot + mybatis + layui + shiro后台权限管理系统
后台管理系统 版本更新 后续版本更新内容 链接入口: springboot + shiro之登录人数限制.登录判断重定向.session时间设置:https://blog.51cto.com/wyai ...
- SpringBoot,用200行代码完成一个一二级分布式缓存
缓存系统的用来代替直接访问数据库,用来提升系统性能,减小数据库复杂.早期缓存跟系统在一个虚拟机里,这样内存访问,速度最快. 后来应用系统水平扩展,缓存作为一个独立系统存在,如redis,但是每次从缓存 ...
- JS中keyup, keypress, keydown以及oninput四个事件的区别
$email_input.onkeyup=function(event){ // console.log('event handle');//按方向键以及backspce esc有反应 长按字母键也没 ...
- 阶段3 1.Mybatis_08.动态SQL_03.mybatis中动态sql语句-foreach和sql标签
foreach标签 in的查询 sql语句好写,但是传参在映射文件里面改怎么传呢 定义一个List<Integer>成员变量,然后生成get和set 定义一个新的查询方法 open:开始符 ...
- 正则表达式分组(Grouping)
一 捕获型 (x) 匹配 x ,并且捕获匹配项 const regExp = /(\w+)\s+(\d+)/; const str = 'Android 8'; str.replace(regExp, ...
- Web UI自动化测试基础——元素定位(二)
本篇文章整理了元素定位的基础知识——多个元素定位方式. 一.多个元素定位方式简介 同单个元素定位方式相同,多个元素定位方式也有与之对应的8种方式,即id.name.class_name.tag_nam ...
- cocos2dx基础篇(14) 滚动视图CCScrollView
[3.x] (1)去掉 "CC" (2)滚动方向 > CCScrollViewDirection 改为强枚举 ScrollView::Dire ...
- Python基础语法之字典
1 字典基础 1.1 字典是无序的对象的集合,通过键来存取,字典的键只能是不可变类型. 1.3 字典的长度可变,异构,任意嵌套. 1.2 python中不可变数据类型包括:数值类型,字符串和元组. 2 ...