04-A的LU分解
一、矩阵$AB$的逆
$(AB)^{-1}=B^{-1}A^{-1}$,顺序正好相反
二、$A=LU$
如矩阵:
$\left[\begin{array}{ll}{2} & {1} \\ {8} & {7}\end{array}\right]$ =>消元=>$\left[\begin{array}{ll}{2} & {1} \\ {0} & {3}\end{array}\right]$
按照我们在第二讲所知,原始矩阵借助$E_{21}$可以实现矩阵的消元,即$E_{21}$ * $A$ = $U$:
$\left[\begin{array}{ll}{1} & {0} \\ {-4} & {1}\end{array}\right] * \left[\begin{array}{ll}{2} & {1} \\ {8} & {7}\end{array}\right]$ = $\left[\begin{array}{ll}{2} & {1} \\ {0} & {3}\end{array}\right]$
注意:这里是2 * 2 矩阵,所以只需要一个初等矩阵相乘即可,若是更大的方阵,则每次消元都需要初等矩阵左乘
而我们知道$A=LU$,那么这个$L$是什么呢?
$A=LU$
$E_{21}A=U$
第二个式子左右同时乘以$E_{21} ^{-1}$:
$A=E_{21} ^{-1}U$
所以这个$L$就是$E_{21} ^{-1}$,初等矩阵的逆矩阵好求,就是初等矩阵变一下符号而已(仅仅因为这里是2*2矩阵,如果3*3或者更大的矩阵,就不是这么简单了):
$L$=$E_{21} ^{-1}$=$\left[\begin{array}{ll}{1} & {0} \\ {4} & {1}\end{array}\right]$
这里只是以简单的2*2矩阵为例进行了讲解,$L$和$U$矩阵表示了下三角矩阵和上三角矩阵,过程如下:
$\left[\begin{array}{ll}{2} & {1} \\ {8} & {7}\end{array}\right]=\left[\begin{array}{ll}{1} & {0} \\ {4} & {1}\end{array}\right]\left[\begin{array}{ll}{2} & {1} \\ {0} & {3}\end{array}\right]$
即:$A = LU$
有时候会把主元摘出来:$A = LDU$
$\left[\begin{array}{ll}{2} & {1} \\ {8} & {7}\end{array}\right] = \left[\begin{array}{ll}{1} & {0} \\ {4} & {1}\end{array}\right]\left[\begin{array}{ll}{2} & {0} \\ {0} & {3}\end{array}\right]\left[\begin{array}{ll}{1} & {1/2} \\ {0} & {1}\end{array}\right]$
我们不能只停留在简单的2 * 2矩阵上,下面我们来处理更大的矩阵,比如3 * 3 矩阵:
$E_{32} E_{31} E_{21} A=U$(消元过程假设不需要进行行交换)
$A= E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} U$
所以:$L= E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}$
实例:
上面的求$L$的过程看起来很麻烦,先要计算三个消元矩阵,然后计算他们的逆,反顺序相乘,其实不然
对于初等矩阵,之前讲到过,它的逆只要把变换再还回去就是,比如矩阵:
$\left[\begin{array}{lll}{1} & {0} & {0} \\ {2} & {1} & {0} \\ {0} & {0} & {1}\end{array}\right]$
表示将某矩阵的第一行乘2加到第二行上(如果用它右乘某矩阵的话),那么这个操作的逆操作就是从第二行减去2倍的第一行就是了,所以它的逆矩阵就是:
$\left[\begin{array}{ccc}{1} & {0} & {0} \\ {-2} & {1} & {0} \\ {0} & {0} & {1}\end{array}\right]$
三、后半节需要再理解一下
04-A的LU分解的更多相关文章
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- LU分解,Javascript代码
///A 为矩阵,这里写成一维数组,如 [1],[1,2,3,4] function GetLU(a) { var n = a.length;//矩阵的总数据数目 var s = Math.sqrt( ...
- matlab实现高斯消去法、LU分解
朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...
- LU分解(2)
接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法.这里需要了解lapapck中的一些函数.lapack中有一个函数名为gaxpy,所对应的矩阵计算公式 ...
- LU分解(1)
1/6 LU 分解 LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU ...
- MATLAB矩阵的LU分解及在解线性方程组中的应用
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...
- 线性代数笔记10——矩阵的LU分解
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...
- 矩阵分解---QR正交分解,LU分解
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...
- 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...
- 矩阵LU分解分块算法实现
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...
随机推荐
- android UI设计及开发
一.viewPager实现左右滑动及导引功能 1,如果每个屏幕只是一个简单的布局,如果简单的话,定义一个arraryIist<View>,利用addview将所有的布局加载, 然后为vie ...
- Servlet开发详讲
一.Servlet简介 Servlet是sun公司提供的一门用于开发动态web资源的技术. Sun公司在其API中提供了一个servlet接口,用户若想用发一个动态web资源(即开发一个Java程序向 ...
- legend3---3、lavarel页面post请求错误之后跳转
legend3---3.lavarel页面post请求错误之后跳转 一.总结 一句话总结: 控制器:return back()->withInput()->with('error','验证 ...
- Latex常用公式整理
目录 常用 常用数学公式 常用希腊字母 说明:博客园中的Latex编辑是以$ latex公式 $,为边界. 1.常用 描述 Latex公式 表达式 下标 x_2 x2 上标 x^2 x2 分数 \f ...
- 测试-修补程序-Hotfix:百科
ylbtech-测试-修补程序-Hotfix:百科 1.返回顶部 1. Hotfix是微软公司研发的一个程序,针对某一个具体的系统漏洞或安全问题而发布的专门解决该漏洞或安全问题,通常称为修补程序. ...
- Gradle之Gradle 源码分析(四)
Gradle 的启动 constructTaskGraph runTasks finishBuild gradle 脚本如何编译和执 插件调用流程 一.Gradle 的启动 1.1 整体实现图 1.2 ...
- IntlliJ IDEA 注册码获取或离线破解
JB 的软件还是挺好用的,建议有钱的话支持正版.. IntelliJ IDEA 有开源版,但是要想玩企业级开发,还是得用收费版. 不管哪种方式,使用前都需要把"0.0.0.0 account ...
- centos7 主从dns配置 bind服务
一,配置前请先关闭防火墙selinux 防火墙关闭方法,参见上一篇文章. setenforce 0 #临时关闭 修改/etc/selinux/config 文件 将SELINUX=enforc ...
- CSS3—— 分页 框大小 弹性盒子 多媒体查询 多媒体查询实例
分页 网站有很多个页面,就需要使用分页来为每个页面做导航 点击及鼠标悬停分页样式 圆角样式 悬停过度效果 带边框的分页 分页间隔 分页字体大小 居中分页 面包屑导航 框大小 box-sizing 属性 ...
- 【MM系列】SAP 客户增强
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP 客户增强 前言部分 大家 ...