参考网址:

1. https://en.wikipedia.org/wiki/First-hitting-time_model

2. https://en.wikipedia.org/wiki/Laplace_transform

Probability theory

By abuse of language, this is referred to as the Laplace transform of the random variable X itself. Replacing s by −t gives the moment generating function of X. The Laplace transform has applications throughout probability theory, including first passage times of stochastic processessuch as Markov chains, and renewal theory.

Of particular use is the ability to recover the cumulative distribution function of a continuous random variable X by means of the Laplace transform as follows[11]

{\displaystyle F_{X}(x)={\mathcal {L}}^{-1}\!\left\{{\frac {1}{s}}E\left[e^{-sX}\right]\right\}\!(x)={\mathcal {L}}^{-1}\!\left\{{\frac {1}{s}}{\mathcal {L}}\{f\}(s)\right\}\!(x).}

laplace transform 拉普拉斯变换的更多相关文章

  1. 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换

    傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络       傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...

  2. OpenCV——Sobel和拉普拉斯变换

    Sobel变换和拉普拉斯变换都是高通滤波器. 什么是高通滤波器呢?就是保留图像的高频分量(变化剧烈的部分),抑制图像的低频分量(变化缓慢的部分).而图像变化剧烈的部分,往往反应的就是图像的边沿信息了. ...

  3. Laplace(拉普拉斯)先验与L1正则化

    Laplace(拉普拉斯)先验与L1正则化 在之前的一篇博客中L1正则化及其推导推导证明了L1正则化是如何使参数稀疏化人,并且提到过L1正则化如果从贝叶斯的观点看来是Laplace先验,事实上如果从贝 ...

  4. 利用matlab写一个简单的拉普拉斯变换提取图像边缘

    可以证明,最简单的各向同性微分算子是拉普拉斯算子.一个二维图像函数 f(x,y) 的拉普拉斯算子定义为 ​ 其中,在 x 方向可近似为 ​ 同理,在 y 方向上可近似为 ​ 于是 我们得到满足以上三个 ...

  5. 傅里叶变换 VS 拉普拉斯变换

    拉普拉斯变换的公式 傅里叶变换公式 拉普拉斯变换是将时域映射到s plane上,而傅里叶变换实际是将时域 映射在s-plane的虚轴上, 傅里叶变换可以看作拉普拉斯变换  的一种特例 1.推导傅里叶变 ...

  6. Transform.TransformDirection 变换方向

    官方描述: JavaScript ⇒ TransformDirection(direction: Vector3): Vector3; C# ⇒ Vector3 TransformDirection( ...

  7. transform,变换

    1.transform属性:rotate(翻转),skew(倾斜),scale(缩放),translate(移位) 用法:transform: rotate(45deg) scale(0.5) ske ...

  8. 形象地展示信号与系统中的一些细节和原理——卷积、复数、傅里叶变换、拉普拉斯变换、零极图唯一确定因果LTI系统

    看懂本文需要读者具备一定的微积分基础.至少开始学信号与系统了本文主要讲解欧拉公式.傅里叶变换的频率轴的负半轴的意义.傅里叶变换的缺陷.为什么因果LTI系统可以被零极图几乎唯一确定等等容易被初学者忽略但 ...

  9. css transform skew变换

    两个参数,x-保持纵坐标不变,所有点旋转逆时针旋转x度,y-横坐标不变所有点顺时针旋转y度

随机推荐

  1. jQuery中的闭包和js中的闭包总结

    关于闭包的知识总结下: 一.闭包 1.定义 闭包的关键是作用域,概念是:能有读取其他函数内部的函数 使用的场景有很多,最常见的是函数封装的时候,再就是在使用定时器的时候,会经常用到; //闭包:有参数 ...

  2. docker部署Javaweb项目(jdk+tomcat+mysql)

    步骤一:在主机下载安装docker,参照Centos7上安装docker 步骤二:下载Linux版本的JDK1.6和Tomcat6.0(其他项目若依赖其他版本的运行环境可选择另外版本下载),通过sec ...

  3. lambda表达式匿名函数

    匿名函数是一个“内联”语句或表达式,可在需要委托类型的任何地方使用.可以使用匿名函数来初始化命名委托,或传递命名委托(而不是命名委托类型)作为方法参数. C# 中委托的发展 在 C# 1.0 中,您通 ...

  4. 通过nginx访问本地图片

    listen 80; server_name image.demo.com; #charset koi8-r; #access_log logs/host.access.log main; locat ...

  5. tensorflow 分布式搭建

    https://blog.csdn.net/qq_40652148/article/details/80467131 https://yq.aliyun.com/articles/602111 git ...

  6. Linux_系统进程管理

    目录 目录 进程管理 进程管理的指令 查看进程ps指令 pgreppidof指令查pid lsof查看系统中的进程 nice指令修改进程的nice值 kill指令结束进程 top系统进程管理器任务管理 ...

  7. Object 的 property descriptor

    property descriptor 属性描述符: o = { get foo() { return 17; } }; d = Object.getOwnPropertyDescriptor(o, ...

  8. Selenium学习之==>常见面试题

    转自:http://www.imdsx.cn/ 一.selenium中如何判断元素是否存在? expected_conditions模块提供了多种校验方式,我常用的一种是presence_of_ele ...

  9. linux打包

    1.打成tar包 sudo tar -zcf boot.tar /boot/ 2.打成zip包 sudo zip -r boot.zip ./*

  10. Debian系列Linux的隐藏WiFi

    Debian系列Linux共用相同的deb安装包,拥有大量的各种软件,是Linux里面最主要的生态系.包括Ubuntu及其衍生版本如Lubuntu/Mate/Kubuntu等,在ARM上也有很好的支持 ...