参考网址:

1. https://en.wikipedia.org/wiki/First-hitting-time_model

2. https://en.wikipedia.org/wiki/Laplace_transform

Probability theory

By abuse of language, this is referred to as the Laplace transform of the random variable X itself. Replacing s by −t gives the moment generating function of X. The Laplace transform has applications throughout probability theory, including first passage times of stochastic processessuch as Markov chains, and renewal theory.

Of particular use is the ability to recover the cumulative distribution function of a continuous random variable X by means of the Laplace transform as follows[11]

{\displaystyle F_{X}(x)={\mathcal {L}}^{-1}\!\left\{{\frac {1}{s}}E\left[e^{-sX}\right]\right\}\!(x)={\mathcal {L}}^{-1}\!\left\{{\frac {1}{s}}{\mathcal {L}}\{f\}(s)\right\}\!(x).}

laplace transform 拉普拉斯变换的更多相关文章

  1. 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换

    傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络       傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...

  2. OpenCV——Sobel和拉普拉斯变换

    Sobel变换和拉普拉斯变换都是高通滤波器. 什么是高通滤波器呢?就是保留图像的高频分量(变化剧烈的部分),抑制图像的低频分量(变化缓慢的部分).而图像变化剧烈的部分,往往反应的就是图像的边沿信息了. ...

  3. Laplace(拉普拉斯)先验与L1正则化

    Laplace(拉普拉斯)先验与L1正则化 在之前的一篇博客中L1正则化及其推导推导证明了L1正则化是如何使参数稀疏化人,并且提到过L1正则化如果从贝叶斯的观点看来是Laplace先验,事实上如果从贝 ...

  4. 利用matlab写一个简单的拉普拉斯变换提取图像边缘

    可以证明,最简单的各向同性微分算子是拉普拉斯算子.一个二维图像函数 f(x,y) 的拉普拉斯算子定义为 ​ 其中,在 x 方向可近似为 ​ 同理,在 y 方向上可近似为 ​ 于是 我们得到满足以上三个 ...

  5. 傅里叶变换 VS 拉普拉斯变换

    拉普拉斯变换的公式 傅里叶变换公式 拉普拉斯变换是将时域映射到s plane上,而傅里叶变换实际是将时域 映射在s-plane的虚轴上, 傅里叶变换可以看作拉普拉斯变换  的一种特例 1.推导傅里叶变 ...

  6. Transform.TransformDirection 变换方向

    官方描述: JavaScript ⇒ TransformDirection(direction: Vector3): Vector3; C# ⇒ Vector3 TransformDirection( ...

  7. transform,变换

    1.transform属性:rotate(翻转),skew(倾斜),scale(缩放),translate(移位) 用法:transform: rotate(45deg) scale(0.5) ske ...

  8. 形象地展示信号与系统中的一些细节和原理——卷积、复数、傅里叶变换、拉普拉斯变换、零极图唯一确定因果LTI系统

    看懂本文需要读者具备一定的微积分基础.至少开始学信号与系统了本文主要讲解欧拉公式.傅里叶变换的频率轴的负半轴的意义.傅里叶变换的缺陷.为什么因果LTI系统可以被零极图几乎唯一确定等等容易被初学者忽略但 ...

  9. css transform skew变换

    两个参数,x-保持纵坐标不变,所有点旋转逆时针旋转x度,y-横坐标不变所有点顺时针旋转y度

随机推荐

  1. ACL 2019 分析

    ACL 2019 分析 word embedding 22篇! Towards Unsupervised Text Classification Leveraging Experts and Word ...

  2. 线对 Line pairs、LP(分辨率cy/mm)

    线对 (Line pairs) 是胶片.镜头等电影摄影领域的专用名词. 每毫米线对一般指分辨率的单位,指仪器在一毫米内能分辨出多少对线. 在一定尺度内的可分辨线对数常被用来衡量仪器的空间分辨能力,能分 ...

  3. 四、IDEA创建SpringBoot项目

    1.从官网下载之后直接导入IDEA: 下载完成解压之后如下图: IDEA导入该项目: 之后一路next即可 导入成功之后你可能会发现左下角一直有个进度条在进行,傻傻的同学可能以为是在下载jar包,下个 ...

  4. Debian系统中当安装deb软件时出现:deb cdrom:[Debian GNU/Linux 9.3.0 _Stretch_ - Official amd64 DVD Binary-1 20171209-12:11]/ stretch contrib main

    vi /etc/apt/sources.list // 注释掉下面这句话# deb cdrom:[Debian GNU/Linux 9.3.0 _Stretch_ - Official amd64 D ...

  5. 【MM系列】SAP 根据采购订单创建外向交货单的BAPI

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP 根据采购订单创建外向交货单的 ...

  6. numpy2

    1.通用函数,是一种在ndarray数据中进行逐元素操作的函数.某些函数接受一个或多个标量数值,并产生一个或多个标量结果,通用函数就是对这些函数的封装. 1.常用的一元通用函数有:abs\fabs s ...

  7. 第九周总结&第七次实验报告

    实验7 实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负数号票的情况. 实验过程 ...

  8. [转帖]NetSuite 进入中国市场满一年,甲骨文公布首份成绩单

    NetSuite 进入中国市场满一年,甲骨文公布首份成绩单 https://baijiahao.baidu.com/s?id=1617073148682281883&wfr=spider&am ...

  9. pg_receivewal实践

    测试从pg_receivewal的日志中恢复从库为主库: 主从配置async模式,配置pg_receivewal接收日志pg_receivewal -D /dbaas/pg/data/pg_recei ...

  10. java基础语法详细介绍

    一.概述 1.java语言概述 是SUN(Stanford University Network,斯坦福大学网络公司 ) 1995年推出的一门高级编程语言; java之父---James Goslin ...