题目

分析

我们发现当两个字符串合并时,a0a1表示左右两个字符串中有多少个TC表示合并处新增的T的个数,那么

a0=a1

a1=a0+a1+C

s0s1表示左右手两个字符串,那么每一次操作后左右手字符串分别为:

操作次数  	    	 左手  右手
0 s0 s1
1 s1 s0s1
2 s0s1 s1s0s1
3 s1s0s1 s0s1s1s0s1
4 s0s1s1s0s1 s1s0s1s0s1s1s0s1
5 s1s0s1s0s1s1s0s1 s0s1s1s0s1s1s0s1s0s1s1s0s1
···

然后我们发现,从第1次操作以后,每次合并处是以s1s1s1s0为一个循环。也就是说当|s0|>=m-1时,我们用KMP处理出a0a1以及s1s1s1s0合并时新增T的个数,然后O(N)递推一遍就可以了。

但是n<=10^9,只能拿60分。

因为递推时有循环,所以就可以构造矩阵,打个矩阵快速幂O(logN)。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=2147483647;
using namespace std;
char s[30000],s1[30000],s2[30000],t[30000];
long long n,m,tot,ans,mo,next[30000],f[2][5],lens=1,lens1=1,nn,nnn;
long long jz[5][5]=
{
{0,0,0,0,0},
{0,1,1,0,0},
{0,1,2,0,0},
{0,1,1,1,0},
{0,0,1,0,1}
},b[5][5];
long long getnext()
{
long long i,j,k;
j=0;
for(i=2;i<=m;i++)
{
while(j>0 && t[j+1]!=t[i]) j=next[j];
if(t[j+1]==t[i]) j++;
next[i]=j;
}
}
long long kmp()
{
long long i,j,k;
getnext();
j=0;
for(i=1;i<=lens;i++)
{
while(j>0 && t[j+1]!=s[i]) j=next[j];
if(t[j+1]==s[i]) j++;
if(j==m) f[0][1]++;
}
j=0;
for(i=1;i<=lens1;i++)
{
while(j>0 && t[j+1]!=s1[i]) j=next[j];
if(t[j+1]==s1[i]) j++;
if(j==m) f[0][2]++;
}
}
long long kmp1()
{
long long i,j,k;
k=0;
for(i=lens-m+2;i<=lens;i++)
s2[++k]=s[i];
for(i=1;i<=m-1;i++)
s2[++k]=s1[i];
j=0;
for(i=1;i<=m+m-2;i++)
{
while(j>0 && t[j+1]!=s2[i]) j=next[j];
if(t[j+1]==s2[i]) j++;
if(j==m) f[0][0]++;
}
k=0;
for(i=lens1-m+2;i<=lens1;i++)
s2[++k]=s1[i];
for(i=1;i<=m-1;i++)
s2[++k]=s[i];
j=0;
for(i=1;i<=m+m-2;i++)
{
while(j>0 && t[j+1]!=s2[i]) j=next[j];
if(t[j+1]==s2[i]) j++;
if(j==m) f[0][3]++;
}
k=0;
for(i=lens1-m+2;i<=lens1;i++)
s2[++k]=s1[i];
for(i=1;i<=m-1;i++)
s2[++k]=s1[i];
j=0;
for(i=1;i<=m+m-2;i++)
{
while(j>0 && t[j+1]!=s2[i]) j=next[j];
if(t[j+1]==s2[i]) j++;
if(j==m) f[0][4]++;
}
}
long long mi()
{
long long x=0,y=1,i,j,k;
while(nn>0)
{
if(nn&1==1)
{
for(i=1;i<=4;i++)
{
f[x][i]=0;
for(j=1;j<=4;j++)
f[x][i]=(f[x][i]+(f[y][j]*jz[j][i])%mo)%mo;
}
x=y;
y=1-y;
}
for(i=1;i<=4;i++)
for(j=1;j<=4;j++)
{
b[i][j]=0;
for(k=1;k<=4;k++)
{
b[i][j]=(b[i][j]+(jz[i][k]*jz[k][j])%mo)%mo;
}
}
for(i=1;i<=4;i++)
for(j=1;j<=4;j++)
{
jz[i][j]=b[i][j];
}
nn/=2;
}
return y;
}
int main()
{
scanf("%d%d%d",&n,&m,&mo);
scanf("%s",t+1);
s[1]='0';
s1[1]='1';
long long i,j,k,l,x,y;
for(j=1;j<=n;j++)
{
for(i=1;i<=lens1;i++)
s2[i]=s1[i];
for(i=1;i<=lens;i++)
s1[i]=s[i];
for(i=1;i<=lens1;i++)
{
s1[lens+i]=s2[i];
}
for(i=1;i<=lens1;i++)
s[i]=s2[i];
x=lens1;
lens1+=lens;
lens=x;
y=j;
if(lens>=m)
break;
}
kmp();
if(n==y)
{
printf("%d\n",f[0][1]%mo);
return 0;
}
kmp1();
f[1][1]=(f[0][2])%mo;
f[1][2]=(f[0][1]+f[0][2]+f[0][0])%mo;
f[1][3]=(f[0][3])%mo;
f[1][4]=(f[0][4])%mo;
n-=y+1;
x=1;
y=0;
y=f[1][3];
n-=0;
nnn=n%2;
nn=n/2;
x=mi();
if(nnn==1)
{
printf("%d\n",(f[x][2])%mo);
return 0;
}
else
printf("%d\n",f[x][1]%mo);
}

【GDOI2016模拟3.9】暴走的图灵机的更多相关文章

  1. 【GDOI2016模拟3.15】基因合成(回文串+性质+DP)

    [GDOI2016模拟3.15]基因合成 题意: 给一个目标串,要求从空串进行最少的操作次数变成目标串,操作有两种: 在串的头或尾加入一个字符. 把串复制一遍后反向接到串的末尾. 因为有回文操作,所以 ...

  2. 【GDOI2016模拟3.16】幂(容斥 + 模型复杂转化)

    [GDOI2016模拟3.16]幂 \(X\in[1,A],Y\in[1,B]\),问:\(x^y\)的不用取值个数. \(A,B\)都是\(10^9\)级别. 然后我们开搞. 首先,假设一个合法的\ ...

  3. 【GDOI2016模拟4.22】总结

    前言 早上,一进机房,发现所有人神情严肃,一股(\(da\))(\(ba\))场的气氛迎面扑来,我一下子意识到:nothing good! 这场比赛结果不是很好,50分: 第一题:感觉上是个神奇的匹配 ...

  4. 【GDOI2016模拟3.10】习用之语

    前言 这道题看上去很水,结果我在比赛上浪费了N多时间在上面,但还是没AC.比赛结束后发现:实际上这道题还是是大水. 题目 分析 设字符串c1c2c3c4,其中c1.c2.c3.c4={'0'~'9', ...

  5. 【JZOJ4461】【GDOI2016模拟4.21】灯塔 分治

    题面 GDOI是一个地处丘陵的小国,为了边防建设,国王希望在国界线上的某一座山峰上建立一座灯塔,照亮整个边界.而灯塔建设的调研工作,就交给了你. GDOI的国境线上有N座连续的山峰,其中第i座的高度是 ...

  6. AI数学基础之:确定图灵机和非确定图灵机

    目录 简介 图灵机 图灵机的缺点 等效图灵机 确定图灵机 非确定图灵机 简介 图灵机是由艾伦·麦席森·图灵在1936年描述的一种抽象机器,它是人们使用纸笔进行数学运算的过程的抽象,它肯定了计算机实现的 ...

  7. 操作系统之CPU管理的直观想法

    计算机:是工具,帮助解决实际问题 操作系统,是为了方便使用硬件 计算机模型: 图灵机,模拟人类计算 起初的图灵机就像一个只会做一道菜的厨师 通用图灵机,核心是设置控制器动作(修改控制器),把逻辑读入控 ...

  8. p,np,npc,np难问题,确定图灵机与非确定图灵机

    本文转自豆瓣_燃烧的影子 图灵机与可计算性 图灵(1912~1954)出生于英国伦敦,19岁进入剑桥皇家学院研究量子力学和数理逻辑.1935年,图灵写出了"论高斯误差函数"的论文, ...

  9. 图灵机(转自wiki)

    图灵机(英语:Turing machine),又称确定型图灵机,是英国数学家艾伦·图灵于1936年提出的一种抽象计算模型,其更抽象的意义为一种数学逻辑机,可以看作等价于任何有限逻辑数学过程的终极强大逻 ...

随机推荐

  1. Linux_SystemLogManager

    目录 目录 前言 日志管理journalctl工具 日志服务属性 自定义日志 journalctl 指令 前言 还是RHEL7的新特性,引入了journalctl指令作为系统日志的管理工具. 日志管理 ...

  2. html5获取位置信息,h5获取位置信息

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  3. 19. Jmeter抓包之浏览器请求

    web测试过程中我们经常需要抓包,通常我们使用fiddler或者Charles.但是jmeter也可以抓包,而且非常好用,闲话不多说,下面进入正题.下面用一个例子进行说明 需求:bing首页搜索南京测 ...

  4. kafka学习(六)

    用kafka构建数据管道   把kafka看着是一个数据的端点,怎么把kafka数据移到mysql,elasticSearchs 这里面介绍kafka connect API怎么样帮忙我们把数据移到我 ...

  5. MySql 性能优化之 Explain

    MySQL 之 Explain 输出分析 背景 前面的文章写过 MySQL 的事务和锁,这篇文章我们来聊聊 MySQL 的 Explain,估计大家在工作或者面试中多多少少都会接触过这个.可能工作中实 ...

  6. 第九周课程总结&实验报告七

    实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负数号票的情况. package ...

  7. exists、in和join比较

    这个根据实际情况具体分析 遇到问题了再具体分析就行.

  8. 使用ntpdate 同步 linux的时间

    1. linux 查看时间和时区的命令 timedatectl 效果为: Local time: Sun -- :: CST Universal time: Sun -- :: UTC RTC tim ...

  9. mock.js的运用

    一:概念 Mock.js是一款模拟数据生成器,旨在帮助前端攻城师独立于后端进行开发,帮助编写单元测试.提供了以下模拟功能: 根据数据模板生成模拟数据 模拟 Ajax 请求,生成并返回模拟数据 基于 H ...

  10. cqoj921E整数匹配

    这是一个贪心题,把我坑的好惨,忘还原得70.上午被卡得,, 首先给出长度为n的一组数,可以两两配对相乘也可以进行相加,问怎样才可以使总和最大?那么可以显然看出来,当这个数为0或1时,我们要相加.其余进 ...