[luogu]P3938 斐波那契[数学]
斐波那契
题目描述
小 C 养了一些很可爱的兔子。 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子。我们假定, 在整个过程中兔子不会出现任何意外。
小 C 把兔子按出生顺序,把兔子们从 1 开始标号,并且小 C 的兔子都是 1 号兔子和 1 号兔子的后代。如果某两对兔子是同时出生的,那么小 C 会将父母标号更小的一对优先标 号。
如果我们把这种关系用图画下来,前六个月大概就是这样的:
图来自luogu:

其中,一个箭头 A → B 表示 A 是 B 的祖先,相同的颜色表示同一个月出生的兔子。
为了更细致地了解兔子们是如何繁衍的,小 C 找来了一些兔子,并且向你提出了 m 个 问题:她想知道关于每两对兔子 a_iai和 b_ibi ,他们的最近公共祖先是谁。你能帮帮小 C 吗?
一对兔子的祖先是这对兔子以及他们父母(如果有的话)的祖先,而最近公共祖先是指 两对兔子所共有的祖先中,离他们的距离之和最近的一对兔子。比如,5 和 7 的最近公共祖 先是 2,1 和 2 的最近公共祖先是 1,6 和 6 的最近公共祖先是 6。
输入输出格式
输入格式:
从标准输入读入数据。 输入第一行,包含一个正整数 m。 输入接下来 m 行,每行包含 2 个正整数,表示 a_iai 和 b_ibi 。
输出格式:
输出到标准输出中。 输入一共 m 行,每行一个正整数,依次表示你对问题的答案。
输入输出样例
输入样例1#:
5
1 1
2 3
5 7
7 13
4 12
输出样例1#:
1
1
2
2
4
说明
【数据范围与约定】 子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解 决一部分测试数据。 每个测试点的数据规模及特点如下表:

特殊性质 1:保证 ai,bi 均为某一个月出生的兔子中标号最大的一对兔子。例如,对 于前六个月,标号最大的兔子分别是 1, 2, 3, 5, 8, 13。
特殊性质 2:保证∣ai−bi∣≤1。
我一开始还以为是有什么公式可以算,真的是神经病。
发现每一个节点减去一个最大的斐波那契数就是其父亲节点,这有很多方法可以证明,比较严谨的是数学归纳法。
理解的话(找规律,证明只是求个安心,oi不需要证明),其实仔细想想就会发现第n个月的数量为f(n)=f(n-1)+f(n-2),每n+1月增加f(n+1)-f(n)=f(n-1)。
注意每次新增加的节点会在1那边开始加起,为f(n-1)+1,结束应该是下一个月连在1的开始也就应该是f(n)+1,而在这一个月是增加了f(n-1),而显然f(n-1)就是小于[f(n-1)+1,f(n)]的最大的斐波那契数。
那我们的命题就得证,虽说可能证的不严谨,但的确是这么一回事。
接下来还有比较坑爹的代码部分,我开始也发现了这个,但不晓得会有什么用,后来才知道就是很暴力的往上爬,爬到一样的就行了,真的是好朴素啊。
还有就是一个个爬还会TLE,要求真多,一个数不可能减去两个一样的斐波那契数,所以就一次减到完,能减就减。[蒟蒻打了二分查找结果TLE]
时间复杂度:O(60m)因为f60就超过10^12,真的是可恶。
代码:
//2017.11.2
//math
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll ;
inline ll read();
namespace lys{
const ll inf = 1e12 ;
ll f[];
int m;
ll a,b;
void swap(ll &x,ll &y){int t=x;x=y;y=t;}
int main(){
int i,l,r,mid;
scanf("%d",&m);
f[]=,f[]=;
;i<=;i++) f[i]=f[i-]+f[i-];
while(m--){
a=read(); b=read();
;i>=;i--){
if(a==b) break ;
if(a>f[i]) a-=f[i];
if(b>f[i]) b-=f[i];
}
printf("%lld\n",a);
}
;
}
}
int main(){
lys::main();
;
}
inline ll read(){
ll kk=,ff=;
char c=getchar();
'){
;
c=getchar();
}
+c-',c=getchar();
return kk*ff;
}
[luogu]P3938 斐波那契[数学]的更多相关文章
- Luogu P3938 斐波那契
Luogu P3938 斐波那契 第一眼看到这题,想到的是LCA,于是开始想怎么建树,倒是想出了\(n^{2}\)算法,看了下数据范围,果断放弃 想了想这数据范围,大的有点不正常,这让我想起了当年被小 ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- 2019.8.3 NOIP模拟测试12 反思总结【P3938 斐波那契,P3939 数颜色,P3940 分组】
[题解在下面] 早上5:50,Gekoo同学来到机房并表态:“打暴力,打暴力就对了,打出来我就赢了.” 我:深以为然. (这是个伏笔) 据说hzoi的人还差两次考试[现在是一次了]就要重新分配机房,不 ...
- luogu P1775 古代人的难题_NOI导刊2010提高(02)(斐波纳契+数学)
题意 已知x,y为整数,且满足以下两个条件: 1.x,y∈[1…k],且x,y,k∈Z 2.(x^2-xy-y^2)^2=1 给你一个整数k,求一组满足上述条件的x,y并且使得x^2+y^2的值最大. ...
- [洛谷P3938]:斐波那契(fibonacci)(数学)
题目传送门 题目描述 小$C$养了一些很可爱的兔子.有一天,小$C$突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...
- Luogu P1306 斐波那契公约数
这道题其实是真的数学巨佬才撸的出来的题目了 但如果只知道结论但是不知道推导过程的我感觉证明无望 首先这道题肯定不能直接搞,而且题目明确说明了一些方法的问题 所以就暗示我们直接上矩阵了啦 但是如果直接搞 ...
- [Luogu P3986] 斐波那契数列 (逆元)
题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- P3938 斐波那契
思路 脑子还真的是好东西,自己太笨了 容易发现父亲节点和儿子节点的关系 儿子节点大于父亲节点 儿子节点和父亲节点之差为斐波那契数,且斐波那契数为小于儿子节点的最大的一个 1e12中有60左右的斐波那契 ...
随机推荐
- 修改了Ubuntu下的/usr目录权限,导致不能使用sudo命令的修复-----转载
刚开始运行sudo时,报了下面这个错误 sudo: must be setuid root,于是上网找解决方法,搜索出来的都是这样解决的 ls -l /usr/bin/sudochown root: ...
- Slience is the sleep that nourishes wisdom
cumulative: 积聚的 lag. v. 落后 backfire. n. 事与愿违 segregated. adj. 分隔的 back-and-forth: 来回地 initiative. ad ...
- [转帖]探秘华为(二):华为和H3C(华三)的分道扬镳
探秘华为(二):华为和H3C(华三)的分道扬镳 https://baijiahao.baidu.com/s?id=1620781715767053734&wfr=spider&for= ...
- zookeeper设置客户端连接超时被expired
在网络环境非常差的情况下,使用zookeeper集群往往会遇到连接expired了: 客户端提示连接从ZOO_CONNECTION_STATE变为ZOO_EXPIRED_SEESION_STATE,然 ...
- layui动态渲染select等组件并初始化赋值失败
描诉:有一个用户信息form表单,其中有部门单选框,数据库中有一张dept(部门)表,要动态渲染出所有部门,并默认选中用户所在部门 关键代码: html页面 <div class="l ...
- 【7.10校内test】T1高级打字机
[题目链接luogu] 这是T1,但是是神仙T1: 对于前100%的数据很好写,直接数组模拟就可以了: (当然也有栈模拟的,据说有模拟炸了的) //50pts#include<bits/stdc ...
- python文件打包/导入 .so 文件
打包so文件 见: http://www.cnblogs.com/ke10/p/py2so.html 导入so文件 import sys sys.path.append(r'/home/project ...
- 提高CUI测试稳定性技术
GUI自动化测试稳定性,最典型的表现形式就是,同样的测试用例在同样的环境上,时而测试通 过,时而测试失败. 这也是影响GUI测试健康发展的一个重要障碍,严重降低了GUI测试的可信性. 五种造成GUI测 ...
- PythonDay07
第七章 今日内容 基础数据类型补充 以后会遇到的坑 二次编码 基础类型补充 stra = "One two"print(a.capitalize()) # 首字母大写print ...
- 搜索专题: HDU1016Prime Ring Problem
Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...