题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4298

题面:

  给定d张无向图,每张图都有n个点。一开始,在任何一张图中都没有任何边。接下来有m次操作,每次操作会给出a,b,k,意为在第k张图中的点a和点b之间添加一条无向边。你需要在每次操作之后输出有序数对(a,b)的个数,使得1<=a,b<=n,且a点和b点在d张图中都连通。

  第一行包含三个正整数d,n,m(1<=d<=200,1<=n<=5000,1<=m<=1000000),依次表示图的个数,点的个数和操作的个数。
  接下来m行,每行包含三个正整数a,b,k(1<=a,b<=n,1<=k<=d),依次描述每一个操作。
  输出m行m个正整数,依次表示每次操作之后满足条件的有序数对(a,b)的个数。

与连通性有关,那么就是并查集咯。

但在一个图里连通了两个点集之后,难道要遍历该点集所有点对,看看在其他图里是否连通?

1.启发式合并。那么对答案的影响,可以考虑落在 “新加入该点集” 的那些点上。

2.考虑 “与一个点在 d 张图里都连通的点的个数” 。

  连通意味着处在同一个连通块中。那么记录每个点在 d 张图中分别属于哪些连通块,这形成一个字符串。

  哈希记录某个字符串对应的点数即可。

需要用哈希表,而且消失的哈希值要从哈希表里删除,才能不超时。即使这样,自己还是平均时间的两倍。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#define ll long long
#define ull unsigned long long
#define pb push_back
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
int g[];
void wrt(ll x)
{
if(!x){puts("");return;}
int t=;
while(x)g[++t]=x%,x/=;
for(int i=t;i;i--)putchar(g[i]+'');puts("");
}
const int N=,M=,bs=,M2=N*M*;
int n,m,D,fa[N][M],siz[N][M],ct[M2];
ll ans; ull bin[M],hs[N];
vector<int> vt[N][M];
namespace H{
const int md=3e7;
int hd[md],xnt,nxt[M2]; ull to[M2];
int get(ull x)
{
int h=x%md;
for(int i=hd[h];i;i=nxt[i])
if(to[i]==x)return i;
to[++xnt]=x; nxt[xnt]=hd[h]; hd[h]=xnt;
return xnt;
}
void del(ull x)
{
int h=x%md;
if(to[hd[h]]==x){hd[h]=nxt[hd[h]];return;}
for(int i=hd[h],lst=;i;lst=i,i=nxt[i])
if(to[i]==x){nxt[lst]=nxt[i];break;}
}
}
int main()
{
D=rdn();n=rdn();m=rdn();
bin[]=;for(int i=;i<=D;i++)bin[i]=bin[i-]*bs;
for(int i=;i<=n;i++)
{
for(int j=;j<=D;j++)
{
fa[i][j]=i; siz[i][j]=;
vt[i][j].pb(i); hs[i]+=i*bin[j];
}
ct[H::get(hs[i])]++;
}
ans=n;
for(int i=,u,v,d;i<=m;i++)
{
u=rdn();v=rdn();d=rdn();
u=fa[u][d]; v=fa[v][d];
if(u==v){wrt(ans);continue;}
if(siz[u][d]<siz[v][d])swap(u,v);
int tot=siz[u][d];
siz[u][d]+=siz[v][d]; vt[u][d].resize(siz[u][d]);
ull tmp=(u-v)*bin[d];
for(int j=,cr;j<siz[v][d];j++)
{
cr=vt[v][d][j]; fa[cr][d]=u; vt[u][d][tot++]=cr;
ull x=hs[cr],y=hs[cr]+tmp; hs[cr]+=tmp;
int t0=H::get(x),t1=H::get(y);
ct[t0]--; ans-=ct[t0]*; ans+=ct[t1]*; ct[t1]++;
}
vector<int> ().swap(vt[v][d]);
wrt(ans);
}
return ;
}

bzoj 4298 [ONTAK2015]Bajtocja——哈希+启发式合并的更多相关文章

  1. BZOJ.4298.[ONTAK2015]Bajtocja(Hash 启发式合并)

    题目链接 \(Description\) 给定\(d\)张无向图,每张图都有\(n\)个点.一开始,在任何一张图中都没有任何边. 接下来有\(m\)次操作,每次操作会给出\(a,b,k\),意为在第\ ...

  2. @bzoj - 4298@ [ONTAK2015]Bajtocja

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定d张无向图,每张图都有n个点.一开始,在任何一张图中都没有任 ...

  3. BZOJ 2733: [HNOI2012]永无乡 启发式合并treap

    2733: [HNOI2012]永无乡 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  4. BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )

    把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...

  5. BZOJ 3123: [Sdoi2013]森林 [主席树启发式合并]

    3123: [Sdoi2013]森林 题意:一个森林,加边,询问路径上k小值.保证任意时刻是森林 LCT没法搞,树上kth肯定要用树上主席树 加边?启发式合并就好了,小的树dfs重建一下 注意 测试点 ...

  6. bzoj 1483: [HNOI2009]梦幻布丁 (链表启发式合并)

    Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色. 例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. Input ...

  7. BZOJ 2733 [HNOI2012]永无乡 - 启发式合并主席树

    Description 1: 查询一个集合内的K大值 2: 合并两个集合 Solution 启发式合并主席树板子 Code #include<cstdio> #include<cst ...

  8. bzoj 2809 左偏树\平衡树启发式合并

    首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节 ...

  9. BZOJ 4919: [Lydsy1706月赛]大根堆 启发式合并

    我不会告诉你这是线段树合并的好题的... 好吧我们可以搞一个multiset在dfs时求出LIS(自带二分+排序)进行启发式合并,轻松加愉悦... #include<cstdio> #in ...

随机推荐

  1. 多线程14-Barrier

    , b => Console.WriteLine());         ; i <= ; i++)             {                 Console.Write ...

  2. 状态压缩dp相关

    状态压缩dp 状态压缩是设计dp状态的一种方式. 当普通的dp状态维数很多(或者说维数与输入数据有关),但每一维总 量很少是,可以将多维状态压缩为一维来记录. 这种题目最明显的特征就是: 都存在某一给 ...

  3. [Bzoj1597][Usaco2008 Mar]土地购买(斜率优化)

    题目链接 因为题目说可以分组,并且是求最值,所以斜率优化应该是可以搞的,现在要想怎么排序使得相邻的数在一个组中最优. 我们按照宽$w$从小到大,高$h$从小到大排序.这时发现可以筛掉一些一定没有贡献的 ...

  4. 源码编译Redis Desktop Manager | 懒人屋

    原文:源码编译Redis Desktop Manager | 懒人屋 源码编译Redis Desktop Manager  2.3k  字    10  分钟    2019-10-10 文章背景 本 ...

  5. CSS样式 换行

    强制不换行 div{ white-space:nowrap; } 自动换行 div{ word-wrap: break-word; word-break: normal; } 强制英文单词断行 div ...

  6. Linux学习--第四天--find、locate、帮助命令、grep、who、w、压缩命令、网络命令、mount

    find 命令格式:find 搜索范围 匹配条件find 搜索范围 匹配条件(搜索范围一定要填写,不写默认为当前文件夹,不包括子文件夹.) find /etc -name init #搜索文件和文件夹 ...

  7. RMQ 区间最大值最小值 最频繁次数

    区间的最大值和最小值 #include <cstdio> #include <cstring> #include <cmath> #include <iost ...

  8. 客户端远程连接docker容器中的mysql 报1251错误

    1.启动容器: [root@localhost ~]# docker run -d -e MYSQL_ROOT_PASSWORD=123456 -p 3306:3306 mysql2.进入容器: [r ...

  9. 写了一个简单可用的IOC

    根据<架构探险从零开始写javaweb框架>内容写的一个简单的 IOC 学习记录    只说明了主要的类,从上到下执行的流程,需要分清主次,无法每个类都说明,只是把整个主线流程说清楚,避免 ...

  10. zabbix命令之:zabbix_get命令

    zabbix_get命令是在server端用来检查agent端的一个命令,在添加完主机或者触发器后,不能正常获得数据,可以用zabbix_get来检查能否采集到数据,以便判断问题症结所在. zabbi ...