题目

预处理\(C\)的前缀和\(sum\)。设前\(i\)个物品的最小答案为\(f\)。

\(f_i=\max\limits_{j\in[1,i)}(f_j+(sum_i-sum_j-L)^2)\)

拆开就是\(f_i=\max\limits_{j\in[1,i)}(f_j+sum_i^2+sum_j^2+L^2-2Lsum_i-2Lsum_j-2sum_isum_j)\)

稍微整理一下\(f_i=\max\limits_{j\in[1,i)}(f_j+sum_j^2-2Lsum_j-2sum_isum_j)+sum_i^2+L^2-2Lsum_i\)

然后直接斜率优化。

代码是以前写的,建议斜率交叉相乘后判断大小避免精度误差。

#include<bits/stdc++.h>
#define N 50001
using namespace std;
inline int read()
{
int x=0;
char ch=getchar();
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x;
}
inline int max(int a,int b)
{
return a>b? a:b;
}
long long sum[N],f[N],q[N],L;
inline double slope(int i,int j)
{
return (double)(f[i]-f[j]+(sum[i]-sum[j])*(sum[i]+sum[j]+(L<<1)))/(double)(sum[i]-sum[j]);
}
int main()
{
register int n=read();
L=read()+1;
for(register int i=1;i<=n;++i)
sum[i]=sum[i-1]+read()+1;
register int hd=1,tl=1;
for(register int i=1;i<=n;++i)
{
while(hd<tl&&slope(q[hd],q[hd+1])<2*sum[i])
++hd;
f[i]=f[q[hd]]+(sum[i]-sum[q[hd]]-L)*(sum[i]-sum[q[hd]]-L);
while(hd<tl&&slope(i,q[tl-1])<slope(q[tl-1],q[tl]))
--tl;
q[++tl]=i;
}
return printf("%lld",f[n]),0;
}

Luogu P3195 [HNOI2008]玩具装箱的更多相关文章

  1. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

  2. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  3. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  4. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  5. 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]

    题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...

  6. 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  7. P3195 [HNOI2008] 玩具装箱(斜率优化DP)

    题目链接 设\(d[i]\)为将前 \(i\) 个玩具装入箱中所需得最小费用 容易得到动态转移方程: \[d[i] = min(d[j] + (s[i]-s[j]+i-j-1-L)^2), (j< ...

  8. 洛谷 P3195 [HNOI2008] 玩具装箱

    链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum ...

  9. P3195 [HNOI2008]玩具装箱TOY

    列出DP方程式:设f[i]表示分组完前i件物品的最小花费,为方便计算,设sum[i]表示是前i件物品的长度和. f[i]=min(f[j]+(sum[i]-sum[j]+i-j-L-1)^2) [0& ...

随机推荐

  1. B/S文件上传下载解决方案

    需求: 项目要支持大文件上传功能,经过讨论,初步将文件上传大小控制在20G内,因此自己需要在项目中进行文件上传部分的调整和配置,自己将大小都以20G来进行限制. PC端全平台支持,要求支持Window ...

  2. 信息提示框:MessageBox

    一 函数原型及参数 function MessageBox(hWnd: HWND; Text, Caption: PChar; Type: Word): Integer;   1.参数列表    hW ...

  3. [HG]腿部挂件 题解

    前言 暴力跑的比正解快. 以下暴力(循环展开+fread读入输出优化) #include<cstdio> #pragma GCC optimize(3, "Ofast" ...

  4. 【BZOJ4259】 残缺的字符串

    Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同 ...

  5. win10 + cuda10.0 + pytorch1.2 + CenterNet 环境搭建

    心血来潮,想跑个 CenterNet 检测瞅瞅...麻蛋,有非官方层 一.下载好 CenterNet 源码 https://github.com/xingyizhou/CenterNet 二.注意你需 ...

  6. js 获取系统时间:年月日 星期 时分秒(动态)

    最近再写一个纯html页面,有时间和天气的数据,天气后台给接口,时间要自己获取,我就自己弄了下, <div class="basic"></div> 这是放 ...

  7. Max Sum Plus Plus(最大m字段和,优化)

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description Now I t ...

  8. 10.Python内置函数一览表

    为了提高程序员的开发效率,Python 提供了很多可以直接拿来用的函数(初学者可以先理解为方法),每个函数都可以帮助程序员实现某些具体的功能. 举个例子,在 Python 2.x 中 print 只是 ...

  9. Unity3D_(游戏)卡牌03_选关界面

      启动屏界面.主菜单界面.选关界面.游戏界面 卡牌01_启动屏界面 传送门 卡牌02_主菜单界面 传送门 卡牌03_选关界面 传送门 卡牌04_游戏界面    传送门 选关界面效果 (鼠标放在不同关 ...

  10. python学习之路(18)

    返回函数 函数作为返回值 高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回. 我们来实现一个可变参数的求和.通常情况下,求和的函数是这样定义的: >>> def a(* ...