Luogu P3195 [HNOI2008]玩具装箱
题目
预处理\(C\)的前缀和\(sum\)。设前\(i\)个物品的最小答案为\(f\)。
\(f_i=\max\limits_{j\in[1,i)}(f_j+(sum_i-sum_j-L)^2)\)
拆开就是\(f_i=\max\limits_{j\in[1,i)}(f_j+sum_i^2+sum_j^2+L^2-2Lsum_i-2Lsum_j-2sum_isum_j)\)
稍微整理一下\(f_i=\max\limits_{j\in[1,i)}(f_j+sum_j^2-2Lsum_j-2sum_isum_j)+sum_i^2+L^2-2Lsum_i\)
然后直接斜率优化。
代码是以前写的,建议斜率交叉相乘后判断大小避免精度误差。
#include<bits/stdc++.h>
#define N 50001
using namespace std;
inline int read()
{
int x=0;
char ch=getchar();
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x;
}
inline int max(int a,int b)
{
return a>b? a:b;
}
long long sum[N],f[N],q[N],L;
inline double slope(int i,int j)
{
return (double)(f[i]-f[j]+(sum[i]-sum[j])*(sum[i]+sum[j]+(L<<1)))/(double)(sum[i]-sum[j]);
}
int main()
{
register int n=read();
L=read()+1;
for(register int i=1;i<=n;++i)
sum[i]=sum[i-1]+read()+1;
register int hd=1,tl=1;
for(register int i=1;i<=n;++i)
{
while(hd<tl&&slope(q[hd],q[hd+1])<2*sum[i])
++hd;
f[i]=f[q[hd]]+(sum[i]-sum[q[hd]]-L)*(sum[i]-sum[q[hd]]-L);
while(hd<tl&&slope(i,q[tl-1])<slope(q[tl-1],q[tl]))
--tl;
q[++tl]=i;
}
return printf("%lld",f[n]),0;
}
Luogu P3195 [HNOI2008]玩具装箱的更多相关文章
- [luogu P3195] [HNOI2008]玩具装箱TOY
[luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]
题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008] 玩具装箱(斜率优化DP)
题目链接 设\(d[i]\)为将前 \(i\) 个玩具装入箱中所需得最小费用 容易得到动态转移方程: \[d[i] = min(d[j] + (s[i]-s[j]+i-j-1-L)^2), (j< ...
- 洛谷 P3195 [HNOI2008] 玩具装箱
链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum ...
- P3195 [HNOI2008]玩具装箱TOY
列出DP方程式:设f[i]表示分组完前i件物品的最小花费,为方便计算,设sum[i]表示是前i件物品的长度和. f[i]=min(f[j]+(sum[i]-sum[j]+i-j-L-1)^2) [0& ...
随机推荐
- 2018 计蒜之道 初赛 第五场 A 贝壳找房搬家
贝壳找房换了一个全新的办公室,每位员工的物品都已经通过搬家公司打包成了箱子,搬进了新的办公室了,所有的箱子堆放在一间屋子里(这里所有的箱子都是相同的正方体),我们可以把这堆箱子看成一个 x*y*z 的 ...
- TTTTTTTTTTTTT CF Good Bye 2015 C- New Year and Domino(CF611C) 二维前缀
题目 题意:给你一个n*m由.和#组成的矩阵,.代表可以放,#代表不可以,问在左上角(px,py)到(右下角qx,qy)这样的一个矩阵中,放下一个长度为2宽度为1的牌有多少种放法: #include ...
- 利用H5缓存机制实现点击按钮第一次与之后再点击分别跳转不同页面
昨天碰到这样一个需求,要求点击按钮第一次跳转到a页面,之后再点击它就跳转到b页面.这个问题我首先就想到了利用H5的缓存sessionstorage来实现,SessionStorage用于本地存储一个会 ...
- dataX调优
dataX调优 标签(空格分隔): ETL 一,Datax调优方向 DataX调优要分成几个部分(注:此处任务机指运行Datax任务所在的机器). 1,网络本身的带宽等硬件因素造成的影响: 2,Dat ...
- 从a标签为什么不能包含div标签-了解HTML5元素分类与内容模型
我们知道按新的 HTML 规范,已经不按 inline 和 block 来区分元素类型了.所以我们在a标签里面使用div标签时候会发现a标签并不能通过改变css盒子模型的方式将div元素包含. 元素分 ...
- kotlin 简单处理 回调参数 加?
Kotlin Parameter specified as non-null is null 2017年10月18日 17:21:49 amiko_ 阅读数:9017 版权声明:本文为博主原创文 ...
- 关于synchronized和ReentrantLock之多线程同步详解
一.线程同步问题的产生及解决方案 问题的产生: Java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查),将会导致数据不准确,相互之间产生冲突. 如下例:假设有一个卖票 ...
- LeetCode 39. 组合总和(Combination Sum)
题目描述 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限 ...
- C与指针学习笔记
有些任务无法用其他语言实现,如直接访问硬件,但C却可以. C对数组下标引用和指针访问并不进行有效性检查,这可以节省时间,但你在使用这些特性时,就必须特别小心.
- winform Timer控件的使用
private void button1_Click(object sender, EventArgs e){ Timer timer1 = new Timer(); timer1.Interval ...