题目

预处理\(C\)的前缀和\(sum\)。设前\(i\)个物品的最小答案为\(f\)。

\(f_i=\max\limits_{j\in[1,i)}(f_j+(sum_i-sum_j-L)^2)\)

拆开就是\(f_i=\max\limits_{j\in[1,i)}(f_j+sum_i^2+sum_j^2+L^2-2Lsum_i-2Lsum_j-2sum_isum_j)\)

稍微整理一下\(f_i=\max\limits_{j\in[1,i)}(f_j+sum_j^2-2Lsum_j-2sum_isum_j)+sum_i^2+L^2-2Lsum_i\)

然后直接斜率优化。

代码是以前写的,建议斜率交叉相乘后判断大小避免精度误差。

#include<bits/stdc++.h>
#define N 50001
using namespace std;
inline int read()
{
int x=0;
char ch=getchar();
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x;
}
inline int max(int a,int b)
{
return a>b? a:b;
}
long long sum[N],f[N],q[N],L;
inline double slope(int i,int j)
{
return (double)(f[i]-f[j]+(sum[i]-sum[j])*(sum[i]+sum[j]+(L<<1)))/(double)(sum[i]-sum[j]);
}
int main()
{
register int n=read();
L=read()+1;
for(register int i=1;i<=n;++i)
sum[i]=sum[i-1]+read()+1;
register int hd=1,tl=1;
for(register int i=1;i<=n;++i)
{
while(hd<tl&&slope(q[hd],q[hd+1])<2*sum[i])
++hd;
f[i]=f[q[hd]]+(sum[i]-sum[q[hd]]-L)*(sum[i]-sum[q[hd]]-L);
while(hd<tl&&slope(i,q[tl-1])<slope(q[tl-1],q[tl]))
--tl;
q[++tl]=i;
}
return printf("%lld",f[n]),0;
}

Luogu P3195 [HNOI2008]玩具装箱的更多相关文章

  1. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

  2. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  3. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  4. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  5. 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]

    题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...

  6. 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  7. P3195 [HNOI2008] 玩具装箱(斜率优化DP)

    题目链接 设\(d[i]\)为将前 \(i\) 个玩具装入箱中所需得最小费用 容易得到动态转移方程: \[d[i] = min(d[j] + (s[i]-s[j]+i-j-1-L)^2), (j< ...

  8. 洛谷 P3195 [HNOI2008] 玩具装箱

    链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum ...

  9. P3195 [HNOI2008]玩具装箱TOY

    列出DP方程式:设f[i]表示分组完前i件物品的最小花费,为方便计算,设sum[i]表示是前i件物品的长度和. f[i]=min(f[j]+(sum[i]-sum[j]+i-j-L-1)^2) [0& ...

随机推荐

  1. extern、static

    1. 基本解释:extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义.此外extern也可用来进行链接指定. 也就是说exter ...

  2. Git:本地项目与远程仓库的git/clone

      版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_40197828/article/details/79283278 初识Git命令行将本地项 ...

  3. leetcode-hard-array-54. Spiral Matrix-NO

    mycode 思路:这种方格图一定要预先设置定位的变量,例如最大的长.宽,变化中的长.宽,在while循环中也要不断判断是否满足break条件 class Solution(object): def ...

  4. SQLServer2012R2部署手册

    1. 安装软件.net framework3.5 1.在安装SQL SERVER 2012前需要3.5的支持.在WIN 2012系统可以在系统管理的添加角色和功能中安装,如下将[.NET Framew ...

  5. vue实现百度下拉框

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  6. 【转】C++友元

    转自:https://www.cnblogs.com/BeyondAnyTime/archive/2012/06/04/2535305.html 1.友元函数的简单介绍 1.1为什么要使用友元函数 在 ...

  7. 左值引用&右值引用实践【TODO】

    这篇文章写的很好,下半部分还未完全理解,后续还需要回头来看看20190706(): https://www.cnblogs.com/likaiming/p/9045642.html 简单实践如下: # ...

  8. git 常用的分支技巧

    分支branch作为git一个强大功能,在平时开发如果能够善加使用,定能成倍提升开发效率. 1.分支开发模式 主分支master上一般是稳定版本,需要保证随时都能发布. 所以,可以建立一个开发分支用于 ...

  9. vue路由在keep-alive下的刷新问题

    问题描述: 在keep-alive中的在跳转到指定的路由时刷新对应的路由,其余不刷新. <transition name="fade" mode="out-in&q ...

  10. ControlTemplate in WPF —— RadioButton

    <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" x ...