题意:有一个长度为n的序列,让你把它分成k段,段内元素取or,段间取and,求能够得到的最大值。

这个算法是我和xz场上yy出来的,然而时间不够了没写出来,而且时间复杂度是$O(nlogn+nlogA)$的比官方题解都要低...(但是常数大了点)

设最大值为ans,我们假设S&ans=S,看看S能否用k条线段凑出来,则将原问题转化成了一个判定问题。从高到低一位一位地考虑,最多只需进行$O(logA)$次判定。

如何进行判定呢?

首先将原数组复制一倍接到后面,然后进行两次尺取。第一次求出每个左端点l所对应的能够覆盖S的最小的右端点r并把它作为一条线段放进数组里(能够覆盖S的意思是S的每一位上的1都可以在[l,r]区间里的某个元素中取到,可以用RMQ预处理区间or然后$O(1)$判断),第二次则对这些线段进行尺取,求出每条线段右边第一条和它不相交的线段,将每条线段与这样的线段连边,可以得到一棵树(或者森林,若为森林则将所有树和一个虚节点连边即可变成一棵树),只需要检查一下这棵树上是否有一个结点的l和与它距离为k的父亲结点的r的区间长度r-l+1是否小于n,从根节点dfs一遍即可。

代码:(我写了两份,第一份怕爆栈所以手写了数组模拟栈,第二份是普通的dfs)

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+;
int n,k,a[N],ST[N][],Log[N],nl,hd[N],ne,q[N],tp;
void build() {
for(int i=; i<=*n; ++i)ST[i][]=a[i];
for(int k=; k<=Log[*n]; ++k)
for(int i=; i+(<<k)-<=*n; ++i)
ST[i][k]=ST[i][k-]|ST[i+(<<(k-))][k-];
}
int qry(int L,int R) {
int k=Log[R-L+];
return ST[L][k]|ST[R-(<<k)+][k];
}
struct D {int l,r;} line[N];
struct E {int v,nxt;} e[N];
struct ND {int u,dep;} sta[N];
void addedge(int u,int v) {e[ne]= {v,hd[u]},hd[u]=ne++;}
bool dfs() {
sta[tp=]= {nl,};
while(~tp) {
int u=sta[tp].u,dep=sta[tp--].dep;
q[dep]=u;
if(dep>=k&&line[q[dep-k+]].r-line[u].l+<=n)return ;
for(int i=hd[u]; ~i; i=e[i].nxt)sta[++tp]= {e[i].v,dep+};
}
return ;
}
bool ok(int S) {
nl=;
for(int i=,j=; i<=*n; ++i) {
if(j<i)j=i;
for(; j<=*n&&(qry(i,j)&S)!=S; ++j);
if(j<=*n)line[nl++]= {i,j};
}
for(int i=; i<=nl; ++i)hd[i]=-;
ne=;
for(int i=,j=; i<nl; ++i) {
for(; j<nl&&line[j].l<=line[i].r; ++j);
addedge(j,i);
}
return dfs();
}
int solve() {
int ret=;
for(int i=; i>=; --i)if(ok(ret|(<<i)))ret|=<<i;
return ret;
}
int main() {
Log[]=-;
for(int i=; i<N; ++i)Log[i]=Log[i>>]+;
scanf("%d%d",&n,&k);
for(int i=; i<=n; ++i)scanf("%d",&a[i]);
for(int i=; i<=n; ++i)a[i+n]=a[i];
build();
printf("%d\n",solve());
return ;
}
 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+;
int n,k,a[N],ST[N][],Log[N],nl,hd[N],ne,q[N];
void build() {
for(int i=; i<=*n; ++i)ST[i][]=a[i];
for(int k=; k<=Log[*n]; ++k)
for(int i=; i+(<<k)-<=*n; ++i)
ST[i][k]=ST[i][k-]|ST[i+(<<(k-))][k-];
}
int qry(int L,int R) {
int k=Log[R-L+];
return ST[L][k]|ST[R-(<<k)+][k];
}
struct D {int l,r;} line[N];
struct E {int v,nxt;} e[N];
void addedge(int u,int v) {e[ne]= {v,hd[u]},hd[u]=ne++;}
bool dfs(int u,int dep) {
q[dep]=u;
if(dep>=k&&line[q[dep-k+]].r-line[u].l+<=n)return ;
for(int i=hd[u]; ~i; i=e[i].nxt)if(dfs(e[i].v,dep+))return ;
return ;
}
bool ok(int S) {
nl=;
for(int i=,j=; i<=*n; ++i) {
if(j<i)j=i;
for(; j<=*n&&(qry(i,j)&S)!=S; ++j);
if(j<=*n)line[nl++]= {i,j};
}
for(int i=; i<=nl; ++i)hd[i]=-;
ne=;
for(int i=,j=; i<nl; ++i) {
for(; j<nl&&line[j].l<=line[i].r; ++j);
addedge(j,i);
}
return dfs(nl,);
}
int solve() {
int ret=;
for(int i=; i>=; --i)if(ok(ret|(<<i)))ret|=<<i;
return ret;
}
int main() {
Log[]=-;
for(int i=; i<N; ++i)Log[i]=Log[i>>]+;
scanf("%d%d",&n,&k);
for(int i=; i<=n; ++i)scanf("%d",&a[i]);
for(int i=; i<=n; ++i)a[i+n]=a[i];
build();
printf("%d\n",solve());
return ;
}

Kattis - bitwise Bitwise (RMQ+尺取+树上dfs)的更多相关文章

  1. hdu 4123 Bob’s Race 树的直径+rmq+尺取

    Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  2. HDU-4123-树形dp+rmq+尺取

    Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. #333 Div2 Problem B Approximating a Constant Range (尺取 && RMQ || 尺取 && multiset)

    题目链接:http://codeforces.com/contest/602/problem/B 题意 :给出一个含有 n 个数的区间,要求找出一个最大的连续子区间使得这个子区间的最大值和最小值的差值 ...

  4. hdu4123-Bob’s Race(树形dp+rmq+尺取)

    题意:Bob想要开一个运动会,有n个房子和n-1条路(一棵树),Bob希望每个人都从不同的房子开始跑,要求跑的尽可能远,而且每条路只能走最多一次.Bob希望所有人跑的距离的极差不大于q,如果起点的编号 ...

  5. Codeforces 682C Alyona and the Tree (树上DFS+DP)

    题目链接:http://codeforces.com/problemset/problem/682/C 题目大意:取树上任意一个点v,若点v的子树中有一个点u使得dist(v,u)>a[u]那么 ...

  6. 玲珑OJ1088【蜜汁尺取】

    前言(膜法): 早上10点多开始膜的,然后到中午交了一发,感觉膜法不对啊!然后就兴起小窗了一发管理员,然后管理员给我发了in,out数据...可是太大并没有什么可取性... 还是自己试,然后发现自己搞 ...

  7. UVA - 11107 Life Forms (广义后缀自动机+后缀树/后缀数组+尺取)

    题意:给你n个字符串,求出在超过一半的字符串中出现的所有子串中最长的子串,按字典序输出. 这道题算是我的一个黑历史了吧,以前我的做法是对这n个字符串建广义后缀自动机,然后在自动机上dfs,交上去AC了 ...

  8. Codeforces - 6E - Exposition - 尺取

    https://codeforc.es/problemset/problem/6/E 既然可以多个log,那就直接map伺候.尺取之后要查询区间里面的最大值和最小值的差.众所周知尺取的时候要是不是有序 ...

  9. Gym 100703I---Endeavor for perfection(尺取)

    题目链接 http://codeforces.com/problemset/gymProblem/100703/I Description standard input/outputStatement ...

随机推荐

  1. CENTOS7下安装和配置MYSQL问题记录

    1.安装 下载mysql源安装包 shell> wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm ...

  2. 【学习笔记】adb命令

    1.adb connect 连接设备 如:adb connect 127.0.0.1:62001 连接夜神模拟器\adb connect 127.0.0.1:21503 链接逍遥模拟器 adb con ...

  3. eclipse中出现错误 Syntax error, insert "}" to complete Block

    结果原因如下 划红线的地方多出来类似于空格的占位符,也许这样看不清楚. 我们来显示空格.制表符和回车键. Window->Preferences->General->Editors- ...

  4. 【GO】一个容易踩坑的内外变量屏蔽问题

    package main import ( "errors" "fmt" ) func et()(string,error){ return "&qu ...

  5. aliyun挂载oss

    配置 oss 挂载 阿里云 ecs 按照ossfs工具:yum install http://gosspublic.alicdn.com/ossfs/ossfs_1.80.5_centos6.5_x8 ...

  6. spring data 返回任意字段

    在spring boot + spring data查询数据库的过程中,有时候总会出现一些复杂的查询,我们希望数据库返回的字段能随意改变.这个需求在mybatis里很好解决,只需要用map接收就可以, ...

  7. PTA(Basic Level)1016.部分A+B

    正整数 A 的"*D**A(为 1 位整数)部分"定义为由 A* 中所有 *D**A* 组成的新整数 PA.例如:给定 A=3862767,DA=6,则 A 的"6 部分 ...

  8. idea 设置自动生成注释

    idea新建类注释规则 /** @ProjectName: ${PROJECT_NAME} @Package: ${PACKAGE_NAME} @ClassName: ${NAME} @Descrip ...

  9. Codeforces 1194B. Yet Another Crosses Problem

    传送门 直接枚举填满哪一行,然后看看这一行填满以后哪一列最小 这个预处理一下 $cnt[i]$ 表示初始时第 $i$ 列有几个位置填满就可以做到 $O(m)$ 对于所有情况取个 $min$ 就是答案, ...

  10. [Next] 五.next自定义内容

    自定义 head 这是默认的 head 这样的 head 并不能满足我们的需求.next 公开了一个内置组件,用于将元素追加到<head>标签的.我们可以通过这个自定义 head 新建 c ...