传送门

解题思路

  其实题目挺好想的。首先子串排名可以由后缀数组求得,因为不算重复的,所以后缀数组的每个后缀排名的去掉\(lcp\)的前缀排名为当前后缀的子串排名。这样就可以预处理出每个后缀的\(l,r\),查询的时候二分出来属于哪个后缀,用\(rmq\)求个\(lcp\)。倒过来处理的式子比较麻烦,要先将排名转化成位置,然后找到对应的倒过来的位置,最后在转化为排名,具体看代码。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std;
const int MAXN = 100005;
typedef long long LL; inline LL rd(){
LL x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,q,m;
LL l[MAXN],r[MAXN]; struct SA{
int x[MAXN<<1],y[MAXN<<1],c[MAXN],sa[MAXN],rk[MAXN];
int num,height[MAXN],Min[MAXN][20];
char s[MAXN];
inline void get_SA(){m='z';
for(int i=1;i<=n;i++) x[i]=s[i],c[x[i]]++;
for(int i=2;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i;i--) sa[c[x[i]]--]=i;
for(int k=1;k<=n;k<<=1){num=0;
for(int i=n-k+1;i<=n;i++) y[++num]=i;
for(int i=1;i<=n;i++) if(sa[i]>k) y[++num]=sa[i]-k;
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++) c[x[i]]++;
for(int i=2;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i;i--) sa[c[x[y[i]]]--]=y[i],y[i]=0;
swap(x,y);x[sa[1]]=1;num=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]] && y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
m=num;if(n==m) break;
}
}
inline void get_height(){
for(int i=1;i<=n;i++) rk[sa[i]]=i;int k=0,j;
for(int i=1;i<=n;i++){
if(rk[i]==1) continue;
if(k) k--;j=sa[rk[i]-1];
while(i+k<=n && j+k<=n && s[i+k]==s[j+k]) k++;
height[rk[i]]=k;
}
}
inline void build(){
for(int i=1;i<=n;i++) Min[i][0]=height[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
Min[i][j]=min(Min[i][j-1],Min[i+(1<<(j-1))][j-1]);
}
inline int query(int x,int y){
if(x==y) return n+1;
if(x>y) swap(x,y);x++;int t=log2(y-x+1);
return min(Min[x][t],Min[y-(1<<t)+1][t]);
}
inline void prework(){
get_SA();get_height();build();
}
}A,B; inline int check(LL lim){
int L=1,R=n,mid;
while(L<=R){
mid=(L+R)>>1;
if(l[mid]<=lim && r[mid]>=lim) return mid;
if(l[mid]>lim) R=mid-1;
else L=mid+1;
}
} int main(){
int posA,posB,lenA,lenB,L,R;LL x,y;
n=rd(),q=rd();scanf("%s",A.s+1);
for(int i=1;i<=n;i++) B.s[n-i+1]=A.s[i];
A.prework();B.prework();
for(int i=1;i<=n;i++)
l[i]=r[i-1]+1,r[i]=l[i]+n-A.sa[i]-A.height[i];
// for(int i=1;i<=n;i++) cout<<l[i]<<" "<<r[i]<<endl;
while(q--){
x=rd(),y=rd();
if(x>r[n] || y>r[n]) {puts("-1");continue;}
posA=check(x);posB=check(y);
// cout<<posA<<" "<<posB<<endl;
lenA=A.height[posA]+x-l[posA]+1;
lenB=A.height[posB]+y-l[posB]+1;
// cout<<lenA<<" "<<lenB<<endl;
L=min(min(lenA,lenB),A.query(posA,posB));
R=min(min(lenA,lenB),B.query(B.rk[n-(A.sa[posA]+lenA-1)+1],B.rk[n-(A.sa[posB]+lenB-1)+1]));
// cout<<L<<" "<<R<<endl;
printf("%lld\n",(LL)L*L+(LL)R*R);
}
return 0;
}

BZOJ 3230: 相似子串(后缀数组)的更多相关文章

  1. BZOJ 3230 相似子串 | 后缀数组 二分 ST表

    BZOJ 3230 相似子串 题面 题解 首先我们要知道询问的两个子串的位置. 先正常跑一遍后缀数组并求出height数组. 对于每一个后缀suffix(i),考虑以i开头的子串有多少是之前没有出现过 ...

  2. bzoj 3230 相似子串——后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3230 作出后缀数组,从 LCP 看每个位置对于本质不同子串的贡献,而且他们已经按前面部分排好 ...

  3. BZOJ 3230 相似子串 ——后缀数组

    题目的Source好有趣. 我们求出SA,然后求出每一个后缀中与前面本质不同的字符串的个数. 然后二分求出当前的字符串. 然后就是正反两次后缀数组求LCP的裸题了. 要注意,这时两个串的起点可能会相同 ...

  4. bzoj 3230 相似子串 —— 后缀数组+二分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3230 先算出每个后缀贡献子串的区间: 然后前缀LCP直接查询,后缀LCP二分长度,查询即可: ...

  5. BZOJ 1396: 识别子串( 后缀数组 + 线段树 )

    这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法..... 求出Height数组后, 我们枚举每一位当做子串的开头. 如上图(x, y是height值), Heigh ...

  6. poj 2774 最长公共子串 后缀数组

    Long Long Message Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 25752   Accepted: 10 ...

  7. URAL 1297 最长回文子串(后缀数组)

    1297. Palindrome Time limit: 1.0 secondMemory limit: 64 MB The “U.S. Robots” HQ has just received a ...

  8. poj 1743 Musical Theme(最长重复子串 后缀数组)

    poj 1743 Musical Theme(最长重复子串 后缀数组) 有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复 ...

  9. BZOJ 3230: 相似子串( RMQ + 后缀数组 + 二分 )

    二分查找求出k大串, 然后正反做后缀数组, RMQ求LCP, 时间复杂度O(NlogN+logN) -------------------------------------------------- ...

随机推荐

  1. django 如何重用app

    若有一个已经运行稳定的程序,那么可以将其打包,供其他项目安装使用. 假设django项目的目录结构如下: mysite/ manage.py mysite/ __init__.py settings. ...

  2. python字符转化

    int(x [,base ]) 将x转换为一个整数 long(x [,base ]) 将x转换为一个长整数 float(x) 将x转换到一个浮点数 complex(real [,imag ]) 创建一 ...

  3. 浏览器 url 编码

    1.问题的由来 : http://www.ruanyifeng.com/blog/2010/02/url_encoding.html 2.网络标准RFC 1738做了硬性规定: 只有字母和数字[0-9 ...

  4. Codeforces 578B "Or" Game (前缀和 + 贪心)

    Codeforces Round #320 (Div. 1) [Bayan Thanks-Round] 题目链接:B. "Or" Game You are given \(n\) ...

  5. CFile CStdioFile CArchive 文件操作之异同(详细)

    两者的主要区别: 一. CFile类操作文件默认的是Binary模式,CStdioFile类操作文件默认的是Text模式.    在Binary模式下我们必须输入'\r\n',才能起到回车换行的效果, ...

  6. 修改maven包本地默认位置

    前言 这段时间上岸了,就有时间整理电脑的资料(强迫症重度患者),就向maven以及gradle的仓库位置动手了. 目的 改变maven的默认位置 步骤 修改maven的配置文件setting.xml( ...

  7. MySql常见的错误

    一些MySql运行中遇到的错误总结,大家也可以留言进行我进行汇总. 一.Unknown error 1146 com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxEr ...

  8. multipart/form-data,application/json和application/x-www-form-urlencoded区别

    application/json和application/x-www-form-urlencoded都是表单数据发送时的编码类型. EncType: enctype 属性规定在发送到服务器之前应该如何 ...

  9. Day1 - 认识大数据& 企业需求分析 & 北风网简介

    上午: 介绍: 海量的乱七八糟的数据中快速的计算出某些有用的信息 刑侦视频追踪 云栖大会 大数据分析/挖掘 ==>  python  <== 重点关注 大数据运维   ==> 运服务 ...

  10. Javascript高级程序设计--读书笔记之面向对象(一)

    哈哈哈万物皆对象,终于到了js的面向对象篇. 一.属性类型 (1)数据属性 数据属性包含一个数据值的位置,在这个位置可以写入和读取数值,数据属性有四个描述器行为的特性 [[Configurable]] ...