题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=2306

题解

倍增 Floyd。

令 \(f[i][j][k]\) 表示走了 \(2^i\) 步,从 \(j\) 到 \(k\) 的距离最大值。

然后转移就是 \(f[i][j][k] = \max\limits_{l=1}^n f[i-1][j][l] + p \cdot f[i-1][l][k]\)。


另外要每一个点建立一个长度为 \(0\) 的自环,用来统计总的最大值。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 100 + 7;
const double INF = 1e18; int n, m, st;
double p;
double a[N], f[N][N][N]; inline void work() {
for (int i = 1; i <= 30; ++i, p = p * p)
for (int j = 1; j <= n; ++j)
for (int k = 1; k <= n; ++k)
for (int l = 1; l <= n; ++l) smax(f[i][j][k], f[i - 1][j][l] + p * f[i - 1][l][k]);
// for (int i = 0; i <= 30; ++i)
// for (int j = 1; j <= n; ++j)
// for (int k = 1; k <= n; ++k) dbg("f[%d][%d][%d] = %.10lf\n", i, j, k, f[i][j][k]);
double ans = 0;
for (int i = 1; i <= n; ++i) smax(ans, f[30][st][i]);
ans += a[st];
printf("%.1lf\n", ans);
} inline void init() {
read(n), read(m);
for (int i = 1; i <= n; ++i) scanf("%lf", &a[i]);
for (int i = 0; i <= 30; ++i)
for (int j = 1; j <= n; ++j) {
for (int k = 1; k <= n; ++k) f[i][j][k] = -INF;
f[i][j][j] = 0;
}
scanf("%d%lf", &st, &p);
int x, y;
for (int i = 1; i <= m; ++i) read(x), read(y), f[0][x][y] = p * a[y];
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj2306 [Ctsc2011]幸福路径 倍增 Floyd的更多相关文章

  1. BZOJ2306:[CTSC2011]幸福路径(倍增Floyd)

    Description 有向图 G有n个顶点 1,  2, …,  n,点i 的权值为 w(i).现在有一只蚂蚁,从给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条边,它 ...

  2. 【bzoj2306】[Ctsc2011]幸福路径 倍增Floyd

    题目描述 一张n个点的有向图,每个点有一个权值.一开始从点$v_0$出发沿图中的边任意移动,移动到路径上的第$i$个点 输入 每一行中两个数之间用一个空格隔开. 输入文件第一行包含两个正整数 n,  ...

  3. BZOJ2306 [Ctsc2011]幸福路径[倍增]

    这个有环的情况非常的讨厌,一开始想通过数学推等比数列的和,但是发现比较繁就不做了. 然后挖掘这题性质. 数据比较小,但是体力可以很接近1(恼怒),也就是说可能可以跳很多很多步.算了一下,大概跳了2e7 ...

  4. BZOJ2306: [Ctsc2011]幸福路径

    Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...

  5. 【BZOJ 2306】 2306: [Ctsc2011]幸福路径 (倍增floyd)

    2306: [Ctsc2011]幸福路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 912  Solved: 437 Description 有向 ...

  6. 【BZOJ2306】幸福路径(动态规划,倍增)

    [BZOJ2306]幸福路径(动态规划,倍增) 题面 BZOJ 题解 不要求确切的值,只需要逼近 显然可以通过移动\(\infty\)步来达到逼近的效果 考虑每次的一步怎么移动 设\(f[i][j]\ ...

  7. [CTSC2011]幸福路径

    题目描述 有向图 G有n个顶点 1, 2, …, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它的体力都会下降 ...

  8. BZOJ 2306: [Ctsc2011]幸福路径

    Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...

  9. bzoj2165: 大楼(倍增floyd)

    题目大意:一个有向图,n(<=100)个点求一条长度>=m(<=10^18)的路径最少经过几条边. 一开始以为是矩乘,蓝鹅当时还没开始写,所以好像给CYC安利错了嘿嘿嘿QWQ 第一眼 ...

随机推荐

  1. characteristics of competent communicators

    https://www.universalclass.com/articles/business/communication-studies/be-a-competent-communicator.h ...

  2. vue 的sync用法

    这个关键字在v2.3.0+ 新增,注意带有 .sync 修饰符的 v-bind 不能和表达式一起使用 (例如 v-bind:title.sync=”doc.title + ‘!’” 是无效的).说白了 ...

  3. JDBC 查询mysql数据库比客户端工具慢的解决办法

    在URL链接参数中配置rewriteBatchedStatements.useServerPrepStmts为true url="jdbc:mysql://****/dbName?useSS ...

  4. Spring Cloud Stream 使用延迟消息实现定时任务(RabbitMQ)

    应用场景 通常在应用开发中我们会碰到定时任务的需求,比如未付款订单,超过一定时间后,系统自动取消订单并释放占有物品. 许多同学的第一反应就是通过spring的schedule定时任务轮询数据库来实现, ...

  5. 测开之路八十六:python操作sqlite

    创建sqlite数据库,并创建表和数据 python自带sqlite3库可以创建数据库文件 导入库:import sqlite3 创建游标,指定数据库名字:con = sqlite3.connect( ...

  6. lombok 简化 get set toString hash equals等方法

    1.lombok 在项目中使用Lombok可以减少很多重复代码的书写.比如说getter/setter/toString等方法的编写. 2.安装 下载 https://projectlombok.or ...

  7. C#7.0新特性和语法糖详解

    转自IT之家网--DotNet码农:https://www.ithome.com/html/win10/305148.htm 伴随Visual Studio 2017的发布,C#7.0开始正式走上工作 ...

  8. 【ABAP系列】SAP abap dialog screen屏幕参数简介

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP abap dialog ...

  9. JDK8以后接口是可以定义实现方法,必须需要default修饰符修饰

    package com.company.java.oop.cls; interface IB { default void doMethod1() { System.out.println(" ...

  10. 001/Node.js(Mooc)--基础知识

    一.Node.js基础知识 node.js用C++语言编写. 简单的说 Node.js 就是运行在服务端的 JavaScript. Node.js 是一个基于Chrome JavaScript 运行时 ...