考虑非莫队的离线算法。。

若[l,r]中有重复数值很麻烦,考虑取一个数为代表(最左或最右)

1.最左:用BIT,先把所有第一个出现的数扔进去,将询问左端点升序,每次都可能产生历史的无用点,并出现新的“第1次出现点”,只需将其加入BIT即可。

2.最右,做法类似

当然有在线做法了(copy),

考虑区间查询l~r之间的颜色种数,其实就是求所有满足(l<=i<=r,next[i]>r)的个数,因为如果某个点的next已近超出了这个区间的范围,就说明这个点对答案产生贡献了。

这个时候问题就已近被转化为给定一个序列,求区间l~r之间权值大于r的个数。

那么我们对于每个点都在可持久化的权值线段树中构造一条新的线段树链就好了,查询就是常规的权值线段树的查询。

对于每个点都要新建一条最多Log2 N个点的链,空间复杂度N log2 N;对于每次询问最多递归深度为Log2 N层,时间复杂度M Log2 N。

【bzoj1878】[SDOI2009]HH的项链的更多相关文章

  1. BZOJ1878 SDOI2009 HH的项链 【莫队】

    BZOJ1878 SDOI2009 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的 ...

  2. bzoj千题计划181:bzoj1878: [SDOI2009]HH的项链

    http://www.lydsy.com/JudgeOnline/problem.php?id=1878 之前用莫队做的,现在用树状数组 把每种数的第一个出现位置在树状数组中+1 nxt[i] 记录i ...

  3. BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)

    1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...

  4. [bzoj1878][SDOI2009]HH的项链_莫队

    HH 的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列.m次询问,每次询问一段区间内数的种类数. 注释:$1\le n\le 5\cdot 10^4$,$1\le m\l ...

  5. [bzoj1878][SDOI2009]HH的项链_树状数组

    HH的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列,m次查询.查询区间数的种类个数. 注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 2\ ...

  6. BZOJ1878 [SDOI2009] HH的项链 [莫队,卡常]

    BZOJ传送门,洛谷传送门 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义. ...

  7. BZOJ1878[SDOI2009]HH的项链

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  8. [BZOJ1878] [SDOI2009] HH的项链 (树状数组)

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  9. 【树状数组】Bzoj1878[SDOI2009] HH的项链

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

  10. [bzoj1878][SDOI2009][HH的项链] (莫队算法)

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...

随机推荐

  1. 每日 mark

    SIGNAL=${SIGNAL:-TERM} PIDS=$(jps -lm | grep -i 'kafka\.Kafka' | awk '{print $1}')if [ -z "$PID ...

  2. springboot入门之一:环境搭建(续)

    在上篇博客中从springboot的入门到运行一个springboot项目进行了简单讲述,详情请查看“springboot入门之一”.下面继续对springboot做讲述. 开发springboot测 ...

  3. python爬取斗图网中的 “最新套图”和“最新表情”

    1.分析斗图网 斗图网地址:http://www.doutula.com 网站的顶部有这两个部分: 先分析“最新套图” 发现地址栏变成了这个链接,我们在点击第二页 可见,每一页的地址栏只有后面的pag ...

  4. String、StringBuffer、StringBuilder有什么区别

    区别 先说说String和StringBuffer/StringBuilder: String是标准的不可变类,是一个字符串常量池,并且声明的对象在方法中是唯一存在的. StringBuffer/St ...

  5. django中model字段与属性

    model field 类型1.AutoField     一个自增的IntegerField,一般不直接使用,Django会自动给每张表添加一个自增的primary key. 2.BigIntege ...

  6. v-for 指令

    JS部分: var app = new Vue({ el: "#app", data() { return { list: [1, 2, 3, 4], objList: [ { i ...

  7. ubuntu10.10安装使用vnc

    原文发表于:2010-12-15转载至cu于:2012-07-21 搭安全试验的环境,在vmware上安装了ubuntu10.10(大学的时候用过,最早用的好像是6系列吧).安装好后想用远程桌面控制, ...

  8. 238. [LeetCode] Product of Array Except Self

    Given an array nums of n integers where n > 1,  return an array output such that output[i] is equ ...

  9. 请教Amazon FBA里面Label Service, Stickerless, Commingled Inventory是什么意思?

    Accept Label Service接受标签服务,选择了以后下面的操作中会有一个让您打印标签的流程,您就可以按照FBA流程提示进行每一步标签服务的操作. Accept Stickless, Com ...

  10. Beta发布——美工+文案

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2408项目地址:https://coding.net/u/wuyy694/ ...