Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."

"No problem."

—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目来源

ACM-ICPC 2018 南京赛区网络预赛

因为n小于20 所以可以往状压上去想

每个题做与不做就是一种状态

枚举每种状态i 再枚举这个状态下最后做的题目j

通过状态转移方程 dp[i] = max(dp[i], dp[i ^ (1 << (j - 1))] + t * a[j] + b[j]

其中t是i中1的个数,也就是第j题如果最后做对应的时间

对于每一种状态i 要判断他这种状态所表示的所有做的题目成立不成立 也就是他这种状态是否成立

也就是说他所有是1的题目 都要判断是否满足他的要求

要求也可以转换为状态来存

另外: maxn = 25 会MLE, maxn = 21就过了

过程中忘记对i这个状态是否成立进行判断了


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; const int maxn = 21; struct pro{
int a, b, s;
int must;
}problems[maxn];
int dp[1 << maxn], n; void init()
{
for(int i = 0; i < maxn;i++){
problems[i].must = 0;
}
memset(dp, 0, sizeof(dp));
} int main()
{
while(scanf("%d", &n) != EOF){
init();
for(int i = 1; i <= n; i++){
scanf("%d%d%d", &problems[i].a, &problems[i].b, &problems[i].s);
for(int j = 0; j < problems[i].s; j++){
int p;
scanf("%d", &p);
problems[i].must |= (1 << (p - 1));
}
} int ans = 0;
for(int i = 0; i < (1 << n); i++){
bool flag = true;
for(int j = 1; j <= n; j++){
if((i & (1 << (j - 1))) == 0){
continue;
}
if((i & problems[j].must) != problems[j].must){
flag = false;
break;
}
}
if(!flag) continue;
for(int j = 1; j <= n; j++){
if((i & (1 << (j - 1))) == 0){
continue;
}
int t = 0, tmp = i;
while(tmp){
if(tmp & 1)
t++;
tmp >>= 1;
}
dp[i] = max(dp[i], dp[i ^ (1 << (j - 1))] + t * problems[j].a + problems[j].b);
//ans = max(ans, dp[i]);
}
} printf("%d\n", dp[(1<<n) - 1]);
}
return 0;
}

南京网络赛E-AC Challenge【状压dp】的更多相关文章

  1. 2018icpc南京网络赛-E AC Challenge(状压+dfs)

    题意: n道题,每道题有ai和bi,完成这道题需要先完成若干道题,完成这道题可以得到分数t*ai+bi,其中t是时间 1s, n<=20 思路: 由n的范围状压,状态最多1e6 然后dfs,注意 ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP

    题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...

  3. 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]

    题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...

  4. hdu 3247 AC自动+状压dp+bfs处理

    Resource Archiver Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Ot ...

  5. hdu 2825 aC自动机+状压dp

    Wireless Password Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】

    题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...

  7. zoj3545Rescue the Rabbit (AC自动机+状压dp+滚动数组)

    Time Limit: 10 Seconds      Memory Limit: 65536 KB Dr. X is a biologist, who likes rabbits very much ...

  8. hdu2825 Wireless Password(AC自动机+状压dp)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  9. HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解

    题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...

  10. 2019年第十届蓝桥杯省赛-糖果(一维状压dp)

    看到20的数据量很容易想到状压dp. 开1<<20大小的数组来记录状态,枚举n个糖包,将其放入不同状态中(类似01背包思想) 时间复杂度O(n*(2^20)). import java.u ...

随机推荐

  1. Spring 4 官方文档学习(十一)Web MVC 框架

    介绍Spring Web MVC 框架 Spring Web MVC的特性 其他MVC实现的可插拔性 DispatcherServlet 在WebApplicationContext中的特殊的bean ...

  2. gsoap简介

    gSoap是什么? 请进 官方网站 http://genivia.com/index.html 这里更直接 http://www.cs.fsu.edu/~engelen/soap.html 英语水平很 ...

  3. ueditor1.4.3配置过程(包含单独上传文件以及图片的使用),ueditor1.4.3上传配置(转 http://www.bkjia.com/webzh/1001016.html)

    这里使用的是ueditor1.4.3的jsp版本的UTF-8版本. 首先下载相应的ueditor,将ueditor文件夹直接拷贝到项目中,文件结构如下所示: 然后将项目要用的jar包导入到lib目录下 ...

  4. iOS 使用AFNetworking 设置cookie

    本问题是由于多账号访问统一服务器时, 由于服务器那边接收到sessionid一样, 故无法区分账号信息. 所以需要在移动端请求的时候重新设置cookie, 步骤如下: 1. 在登录的时候, 先将 re ...

  5. 关于write solid code中的memset

    文中说明memset可以通过操作整形以加速程序执行速度,这一点值得肯定,问题在于unicore或arm中协处理器有地址访问对齐检查,如果我们如此操作,编译器最终使用str指令来完成,那么当地址未对齐时 ...

  6. 【matlab】使用VideoReader提取视频的每一帧,不能用aviread函数~

    这个问题是matlab版本问题,已经不用aviread函数了~ VideoReader里面没有cdata这个函数! MATLAB不支持avireader了,而且没有cdata这个属性了,详情去官网ht ...

  7. CSS background 之设置图片为背景技巧

    首先先来看看background有那些值: 可以按顺序设置如下属性(可点击进入相应的css手册查看使用):background-color 背景颜色background-image 背景图片backg ...

  8. 如何通过phoenix中查看表的主键信息

    需求描述: 今天一个开发的同事让帮忙查看下表的主键列,在此记录下. 操作过程: 1.通过!primarykeys命令查看表的主键 !primarykeys SYNC_BUSINESS_INFO_BYD ...

  9. 在你开发完brew应用之后 ,你又如果将brew应用由编译成可以部署到brew真机上的程序包呢

    参考自:http://blog.csdn.net/feimor/article/details/6239281 一.准备工作(安装工具) 先安装Visual C++ 6.0,再安装BREW SDK v ...

  10. Makefile--基本规则(零)

    [版权声明:转载请保留出处:周学伟:http://www.cnblogs.com/zxouxuewei/] 一般一个稍大的linux项目会有很多个源文件组成,最终的可执行程序也是由这许多个源文件编译链 ...