Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."

"No problem."

—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目来源

ACM-ICPC 2018 南京赛区网络预赛

因为n小于20 所以可以往状压上去想

每个题做与不做就是一种状态

枚举每种状态i 再枚举这个状态下最后做的题目j

通过状态转移方程 dp[i] = max(dp[i], dp[i ^ (1 << (j - 1))] + t * a[j] + b[j]

其中t是i中1的个数,也就是第j题如果最后做对应的时间

对于每一种状态i 要判断他这种状态所表示的所有做的题目成立不成立 也就是他这种状态是否成立

也就是说他所有是1的题目 都要判断是否满足他的要求

要求也可以转换为状态来存

另外: maxn = 25 会MLE, maxn = 21就过了

过程中忘记对i这个状态是否成立进行判断了


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; const int maxn = 21; struct pro{
int a, b, s;
int must;
}problems[maxn];
int dp[1 << maxn], n; void init()
{
for(int i = 0; i < maxn;i++){
problems[i].must = 0;
}
memset(dp, 0, sizeof(dp));
} int main()
{
while(scanf("%d", &n) != EOF){
init();
for(int i = 1; i <= n; i++){
scanf("%d%d%d", &problems[i].a, &problems[i].b, &problems[i].s);
for(int j = 0; j < problems[i].s; j++){
int p;
scanf("%d", &p);
problems[i].must |= (1 << (p - 1));
}
} int ans = 0;
for(int i = 0; i < (1 << n); i++){
bool flag = true;
for(int j = 1; j <= n; j++){
if((i & (1 << (j - 1))) == 0){
continue;
}
if((i & problems[j].must) != problems[j].must){
flag = false;
break;
}
}
if(!flag) continue;
for(int j = 1; j <= n; j++){
if((i & (1 << (j - 1))) == 0){
continue;
}
int t = 0, tmp = i;
while(tmp){
if(tmp & 1)
t++;
tmp >>= 1;
}
dp[i] = max(dp[i], dp[i ^ (1 << (j - 1))] + t * problems[j].a + problems[j].b);
//ans = max(ans, dp[i]);
}
} printf("%d\n", dp[(1<<n) - 1]);
}
return 0;
}

南京网络赛E-AC Challenge【状压dp】的更多相关文章

  1. 2018icpc南京网络赛-E AC Challenge(状压+dfs)

    题意: n道题,每道题有ai和bi,完成这道题需要先完成若干道题,完成这道题可以得到分数t*ai+bi,其中t是时间 1s, n<=20 思路: 由n的范围状压,状态最多1e6 然后dfs,注意 ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP

    题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...

  3. 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]

    题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...

  4. hdu 3247 AC自动+状压dp+bfs处理

    Resource Archiver Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Ot ...

  5. hdu 2825 aC自动机+状压dp

    Wireless Password Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】

    题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...

  7. zoj3545Rescue the Rabbit (AC自动机+状压dp+滚动数组)

    Time Limit: 10 Seconds      Memory Limit: 65536 KB Dr. X is a biologist, who likes rabbits very much ...

  8. hdu2825 Wireless Password(AC自动机+状压dp)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  9. HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解

    题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...

  10. 2019年第十届蓝桥杯省赛-糖果(一维状压dp)

    看到20的数据量很容易想到状压dp. 开1<<20大小的数组来记录状态,枚举n个糖包,将其放入不同状态中(类似01背包思想) 时间复杂度O(n*(2^20)). import java.u ...

随机推荐

  1. linux ad7606 驱动解读

    本文记录阅读linux ad7606驱动的笔记. 主要文件 drivers/staging/iio/adc/ad7606_spi.c drivers/staging/iio/adc/ad7606_co ...

  2. 编译 boost 库(win7+boost1.60+vs2008)

    参见:http://blog.csdn.net/u013074465/article/details/42532527 下载boost安装包 https://sourceforge.net/proje ...

  3. The configuration file 'appsettings.json' was not found and is not optional

    问: .Net Core: Application startup exception: System.IO.FileNotFoundException: The configuration file ...

  4. 怎么成为asp.net大神!!!!!!!!!!!!!!!!!!!怎么成为asp.net大神!!!!!!!!!!!!!!!!!!!

    怎么成为asp.net大神!!!!!!!!!!!!!!!!!!!怎么成为asp.net大神!!!!!!!!!!!!!!!!!!!怎么成为asp.net大神!!!!!!!!!!!!!!!!!!!怎么成为 ...

  5. jquery计算出left和top,让一个div水平垂直居中的简单实例

    if($("#cont1").css("position")!="fixed"){         $("#cont1" ...

  6. Entity Framework底层操作封装V2版本号(4)

    这个版本号里面.由于涉及到了多库的操作.原有的系统方法不能做到这种事情了.所以这里有了一点差别 这个类的主要用作就是,连接字符串的作用,默认是指向默认配置里面的,可是你能够指向其它的连接 using ...

  7. windows平台的游戏运行库

    每一个都在PC上玩过游戏的人,都知道要安装一些必备的游戏运行库,游戏才能运行,这里指的PC是特指Windows操作系统平台.一般来说最常见的运行库是DirectX.Microsoft Visual C ...

  8. CCNet持续集成编译中SVN问题解决

    SVN问题 BUILD EXCEPTION Error Message: ThoughtWorks.CruiseControl.Core.CruiseControlException: Source ...

  9. #error和line

    #error message ----注:message不需要用双引号包围, #error 编译指示字用于自定义程序特有的编译错误消息类似的, #warning用于生成编译警告,但不会停止编译. 在l ...

  10. cocos2d-x游戏引擎核心之八——多线程

    一.多线程原理 (1)单线程的尴尬 重新回顾下 Cocos2d-x 的并行机制.引擎内部实现了一个庞大的主循环,在每帧之间更新各个精灵的状态.执行动作.调用定时函数等,这些操作之间可以保证严格独立,互 ...