本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。习惯上,我们会按下面格式引入所需要的包:

一、            创建对象

可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:

4、查看不同列的数据类型:

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:

二、            查看数据

详情请参阅:Basics Section

很常用的但是原文中没说的一个查看:用for循环来迭代数据:

for index,row in df.iterrows():

print('行索引:',index)

print('行数据:',row)

1、  查看frame中头部和尾部的行:

2、  显示索引、列和底层的numpy数据:

3、  describe()函数对于数据的快速统计汇总:

4、  对数据的转置:

5、  按轴进行排序

6、  按值进行排序

三、            选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing

很常用的但是原文中没说的一个查询:通过行号和列名定位单元格,比如取出第三行的pname字段的值,我的办法:

df.iloc[2].pname,如果你明确知道行索引可以用loc:df.loc[index].pname;最后是万能式:df.ix[2][pname]或df.ix[index][2],索引与列,均可为序号或名称

l  获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A:

2、 通过[]进行选择,这将会对行进行切片

l  通过标签选择

1、 使用标签来获取一个交叉的区域

2、 通过标签来在多个轴上进行选择

3、 标签切片

4、 对于返回的对象进行维度缩减

5、 获取一个标量

6、 快速访问一个标量(与上一个方法等价)

l  通过位置选择

1、 通过传递数值进行位置选择(选择的是行)

2、 通过数值进行切片,与numpy/python中的情况类似

3、 通过指定一个位置的列表,与numpy/python中的情况类似

4、 对行进行切片

5、 对列进行切片

6、 获取特定的值

l  布尔索引

1、 使用一个单独列的值来选择数据:

2、 使用where操作来选择数据:

3、 使用isin()方法来过滤:

在索引index中搜索,这是最基本的查询了:

比如查询数据中是否有‘2013-01-01’ 这天的数据:
if len(df.query('index == "{0}"'.format('2013-01-01')) )>0:

 

l  设置

按条件修改列值:

list(df['colName'].apply(lambda x:1 if x>np.mean(df(traindf['colName'])) else 0))#大于该列平均值则为1

1、 设置一个新的列:

2、 通过标签设置新的值:

3、 通过位置设置新的值:

4、 通过一个numpy数组设置一组新值:

上述操作结果如下:

5、 通过where操作来设置新的值:

四、            缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section

1、  reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、

2、  去掉包含缺失值的行:

3、  对缺失值进行填充:

4、  对数据进行布尔填充:

五、            相关操作

详情请参与 Basic Section On Binary Ops

l  统计(相关操作通常情况下不包括缺失值)

1、  执行描述性统计:

2、  在其他轴上进行相同的操作:

3、  对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:

l  Apply

1、  对数据应用函数:

l  直方图

具体请参照:Histogramming and Discretization

l  字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

六、            合并

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

l  Concat

把一个字典插入表中形成新的一列:df['列名'][dict.keys()] = dict.values()

删除一列:del df['列名']

l  Join 类似于SQL类型的合并,具体请参阅:Database style joining

l  Append 将一行连接到一个DataFrame上,具体请参阅Appending

七、            分组

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

l  (Splitting)按照一些规则将数据分为不同的组;

l  (Applying)对于每组数据分别执行一个函数;

l  (Combining)将结果组合到一个数据结构中;

详情请参阅:Grouping section

1、  分组并对每个分组执行sum函数:

2、  通过多个列进行分组形成一个层次索引,然后执行函数:

八、            Reshaping

详情请参阅 Hierarchical Indexing 和 Reshaping

l  Stack

l  数据透视表,详情请参阅:Pivot Tables.

可以从这个数据中轻松的生成数据透视表:

九、            时间序列

Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section

更改日期列的日期格式:df['date'] = pd.to_datetime(df['date'], format='%Y-%m-%d')

1、  时区表示:

2、  时区转换:

3、  时间跨度转换:

4、  时期和时间戳之间的转换使得可以使用一些方便的算术函数。

十、            Categorical

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introductionAPI documentation

1、  将原始的grade转换为Categorical数据类型:

2、  将Categorical类型数据重命名为更有意义的名称:

3、  对类别进行重新排序,增加缺失的类别:

4、  排序是按照Categorical的顺序进行的而不是按照字典顺序进行:

5、  对Categorical列进行排序时存在空的类别:

十一、           画图

具体文档参看:Plotting docs

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

十二、           导入和保存数据

l  CSV,参考:Writing to a csv file

1、  写入csv文件:

2、  从csv文件中读取:

l  HDF5,参考:HDFStores

1、  写入HDF5存储:

2、  从HDF5存储中读取:

l  Excel,参考:MS Excel

1、  写入excel文件:

2、  从excel文件中读取:

python 10分钟入门pandas的更多相关文章

  1. Python 30分钟入门指南

    Python 30分钟入门指南 为什么 OIer 要学 Python? Python 语言特性简洁明了,使用 Python 写测试数据生成器和对拍器,比编写 C++ 事半功倍. Python 学习成本 ...

  2. 10分钟了解 pandas - pandas官方文档译文 [原创]

    10 Minutes to pandas 英文原文:https://pandas.pydata.org/pandas-docs/stable/10min.html 版本:pandas 0.23.4 采 ...

  3. Markdown - Typora 10分钟入门 - 精简归纳

    Markdown - Typora 10分钟入门 - 精简归纳 JERRY_Z. ~ 2020 / 8 / 22 转载请注明出处! 目录 Markdown - Typora 10分钟入门 - 精简归纳 ...

  4. Apache Shiro系列三,概述 —— 10分钟入门

     一.介绍 看完这个10分钟入门之后,你就知道如何在你的应用程序中引入和使用Shiro.以后你再在自己的应用程序中使用Shiro,也应该可以在10分钟内搞定. 二.概述 关于Shiro的废话就不多说了 ...

  5. JavaScript 10分钟入门

    JavaScript 10分钟入门 随着公司内部技术分享(JS进阶)投票的失利,先译一篇不错的JS入门博文,方便不太了解JS的童鞋快速学习和掌握这门神奇的语言. 以下为译文,原文地址:http://w ...

  6. kafka原理和实践(一)原理:10分钟入门

    系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...

  7. 转载:Python十分钟入门

    Python十分钟入门:http://python.jobbole.com/23425/

  8. (转)十分钟入门pandas

    本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook . 习 ...

  9. 【译】10分钟学会Pandas

    十分钟学会Pandas 这是关于Pandas的简短介绍主要面向新用户.你可以参考Cookbook了解更复杂的使用方法 习惯上,我们这样导入: In [1]: import pandas as pd I ...

随机推荐

  1. MySQL Date函数的正确用法

    以下的文章主要介绍的是MySQL Date函数的实际应用其中包括如何获取当前时间的具体操作,Unix时间的具体应用,时间前后.时间间隔与时间转换的实际内容描述,以下就是文章的主要内容. MySQL D ...

  2. 【Java面试题】15 String s="Hello"; s=s+“world!”;这两行代码执行后,原始的String对象中的内容到底变了没有?String与StringBuffer的超详细讲解!!!!!

    1.Java中哪些类是不能被继承的? 不能被继承的是那些用final关键字修饰的类.一般比较基本的类型或防止扩展类无意间破坏原来方法的实现的类型都应该是final的,在java中,System,Str ...

  3. CentOS服务器上搭建Gitlab安装步骤、中文汉化详细步骤、日常管理以及异常故障排查

    一, 服务器快速搭建gitlab方法 可以参考gitlab中文社区 的教程centos7安装gitlab:https://www.gitlab.cc/downloads/#centos7centos6 ...

  4. ThinkPHP之文件上传

    在项目其中.我们有的时候需要上传图片的功能.简单的从面相过程的方法是相对较为复杂的,要一步一步的来.假设用框架的话,相对就简单了很多,主要就是方法以及每个变量所代表的意义,然后就是一些注意的地方了. ...

  5. .net cs后台刷新aspx页面的四种方式

    一:Response.Redirect(Request.Url.ToString()); 二:Response.Write("<script language=javascript&g ...

  6. FairyGUI和NGUI对比

    一直在做Unity方面的游戏开发,经同事介绍了解到有这么一个GUI能提供跨平台的能力,有独立UI编辑器,而且功能强大,能够组合成复杂的UI界面,可以导出到Unity,Flash,Starling等,文 ...

  7. UGUI 的多分辨率适配

    1.Canvas的属性配置 2.Canvas Scaler的属性配置 3.根据不同的屏幕的比例动态修改缩放基准 void Start () { float standard_width = 960f; ...

  8. angular学习(十五)——Provider

    转载请写明来源地址:http://blog.csdn.net/lastsweetop/article/details/60966263 Provider简单介绍 每一个web应用都是由多个对象协作完毕 ...

  9. 浅析Linux内核同步机制

    非常早之前就接触过同步这个概念了,可是一直都非常模糊.没有深入地学习了解过,最近有时间了,就花时间研习了一下<linux内核标准教程>和<深入linux设备驱动程序内核机制>这 ...

  10. python2.0 s12 day4

    python2.0 s12 day404 python s12 day4 TengLan回顾上节内容 05 python s12 day4 迭代器原理及使用 本节大纲介绍: 1.迭代器&生成器 ...