ElasticSearch优化系列五:机器设置(硬盘、CPU)
硬盘对集群非常重要,特别是建索引多的情况。磁盘是一个服务器最慢的系统,对于写比较重的集群,磁盘很容易成为集群的瓶颈。
如果可以承担的器SSD盘,最好使用SSD盘。如果使用SSD,最好调整I/O调度算法。RAID0是加快速度的不错方法。
ES建议机器配置:64G内存 SSD硬盘 RAID0,不要使用NAS。
自动调整存储带宽
在2.0.0之前,elasticsearch会限制合并速度(merges),默认为20MB/sec。但是这个速率经常是显得太小,导致合并速度落后于索引速度,进而限制了索引速度。
现在Elasticsearch2.0.0,使用了自动调整合并IO速度方式:如果合并落于索引速度,合并IO速度会逐渐增大,并且随着合并的持续进行会减小。在索引吞吐量小的时候,即使突然来了一个大的合并任务,这种情况也不会吞噬整个节点可用的IO,极小化的降低对正在进行的查询和索引的影响。
但是对索引请求大的情况下,允许的合并速度会自动调整到跟上索引的速度。
有了2.0.0这个特性,意味着我们不需要管任何的限制值了,只要用默认的就好了。
2.0.0之前store throttle 设置值有如下几个,在2.0.0版本已经删除了。
indices.store.throttle.type,
indices.store.throttle.max_bytes_per_sec,
index.store.throttle.type,
index.store.throttle.max_bytes_per_sec
另外,Recovery/snapshot/restore 仍然是有速度限制的,默认都是20MB/sec。
多个path.data 路径
如果磁盘空间和IO性能是Elasticsearch的瓶颈的话,使用多个IO设备(通过设置多个path.data路径)存储shards,能够增加总的存储空间和提升IO性能。
在Elasticsearch2.0之前的版本,也是配置多个path.data路径,但是其相当于RAID 0,每个shards的数据会分布在所有的磁盘上。当一个节点上有一块盘坏了的情况下,该节点上所有的shards都会损坏了。需要恢复该节点上的所有shards。
在2.0.0版本,把这个实现改成了:每个shards所有的数据只会在一块磁盘上面。这样即使一个节点的一块磁盘损坏了,也只是损失了该磁盘上的shards,其它磁盘上的shards安然无事。只需要恢复该块盘上的shards即可。
升级到2.0.0版本时,旧版本一个shard分布到所有磁盘上的数据,会拷贝到一块盘上。
对应这个改变,在设计shards时,如果一个节点有10块磁盘,共3个节点,则shards至少30个,才能分布在30块盘上(即最大限度使用磁盘空间)。
参考
https://www.elastic.co/blog/performance-indexing-2.0
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
CPU(threadpool)
线程不是越大越好,一般设置threadpool数为CPU cores的个数
搜索:int((# of cores * 3) / 2) + 1
ElastiSearch服务器有多个线程池大小配置。主要有:index,search,suggest,get,bulk,percolate,snapshot,snapshot_data,warmer,refresh。
在此主要针对index和search进行一个配置调整。index操作包含:创 建/更新/删除索引数据。search操作主要针对用户的各种搜索操作。
具体配置如下:
threadpool:
index:
type: fixed
size: 100
search:
type: fixed
size: 1000
参考文档
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
未完待续
ElasticSearch优化系列五:机器设置(硬盘、CPU)的更多相关文章
- ElasticSearch实战系列五: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合
Title:ElasticSearch实战系列四: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合 前言 在上上一篇中介绍了ElasticSearch实战系列三: Elas ...
- ElasticSearch优化系列二:机器设置(内存)
预留一半内存给Lucene使用 一个常见的问题是配置堆太大.你有一个64 GB的机器,觉得JVM内存越大越好,想给Elasticsearch所有64 GB的内存. 当然,内存对于Elasticsear ...
- ElasticSearch优化系列三:机器设置(内存)
heap参数设置优化 命令行修改 ./bin/elasticsearch -Xmx10g -Xms10g xmx-JVM最大允许分配的堆内存,按需分配 xms-JVM初始分配的堆内存 此值设置与-Xm ...
- ElasticSearch优化系列一:集群节点规划
节点职责单一,各司其职 elasticSearch的配置文件中有2个参数:node.master和node.data.这两个参 数搭配使用时,能够帮助提供服务器性能. 数据节点node.master: ...
- ElasticSearch优化系列七:优化建议
尽量运行在Sun/Oracle JDK1.7以上环境中,低版本的jdk容易出现莫名的bug,ES性能体现在在分布式计算中,一个节点是不足以测试出其性能,一个生产系统至少在三个节点以上. ES集群节点规 ...
- ElasticSearch优化系列六:索引过程
大家可能会遇到索引数据比较慢的过程.其实明白索引的原理就可以有针对性的进行优化.ES索引的过程到相对Lucene的索引过程多了分布式数据的扩展,而这ES主要是用tranlog进行各节点之间的数据平衡. ...
- 写代码如何合理使用和优化我们的机器资源(CPU、内存、网络、磁盘)
写代码脑子一定要绷紧一根弦,认知到我们所在的机器资源是有限的.机器资源有哪些?CPU.内存.网络.磁盘等,如果不做好保护控制工作,一旦某一资源满负荷,很容易导致出现线上问题. 1 CPU 资源怎么限制 ...
- ElasticSearch优化系列四:ES的heap是如何被瓜分掉的
以下分别解读几个我知道的内存消耗大户: Segment Memory Segment不是file吗?segment memory又是什么?前面提到过,一个segment是一个完备的lucene倒排索引 ...
- SSE图像算法优化系列五:超高速指数模糊算法的实现和优化(10000*10000在100ms左右实现)。
今天我们来花点时间再次谈谈一个模糊算法,一个超级简单但是又超级牛逼的算法,无论在效果上还是速度上都可以和Boxblur, stackblur或者是Gaussblur想媲美,效果上,比Boxblur来的 ...
随机推荐
- java 反射和泛型
反射 在计算机科学中,反射是指计算机程序在运行时(Run time)可以访问.检测和修改它本身状态或行为的一种能力.[1]用比喻来说,反射就是程序在运行的时候能够“观察”并且修改自己的行为. 要注意术 ...
- 检查 NaN 数据值 (C/C++/Python 实现)
NaN 是 Not a Number 的缩写.它是一个数值类型值,通常在浮点计算中,表示未定义或无法表示的值.而且,不能直接使用相等运算符 (==) 检查 NaN.由于在程序中,nan == nan ...
- python数据处理与机器学习
提纲 numpy: #genformtxt import numpy as np #genformtxtdata=np.genfromtxt("genfromtxtdata") # ...
- java笔记--局部内部类认识与理解
java内部类 内部类应用最多的场景是在编写GUI程序时,将大量的事件监听处理放在了内部类中进行 --如果朋友您想转载本文章请注明转载地址"http://www.cnblogs.com/XH ...
- winfrom 实现窗体圆角
在窗体中加入一下代码 #region 窗体圆角的实现 private void ComFrmBase_Resize(object sender, EventArgs e) { if (this.Win ...
- 查询SQL Version详细信息
下面是一个查询SQL Server版本并给出升级建议的SQL代码,用来学习写SQL代码. ------------------------------------------------------- ...
- December 17th 2016 Week 51st Saturday
Great minds have purpose, others only have wishes. 杰出的人有着目标,其他人只拥有愿望. Are you clear about the differ ...
- Java虚拟机13:Java类加载机制
前言 我们知道我们写的程序经过编译后成为了.class文件,.class文件中描述了类的各种信息,最终都需要加载到虚拟机之后才能运行和使用.而虚拟机如何加载这些.class文件?.class文件的信息 ...
- SOJ 1017 Power of Cryptography 库函数精度
Background Current work in cryptography involves (among other things) large prime numbers and comput ...
- urllib库基本使用
#导入urllib库 import urllib.request #打开网址 file=urllib.request.urlopen("http://www.sohu.com/", ...