codeforces 979 C. Kuro and Walking Route
2 seconds
256 megabytes
standard input
standard output
Kuro is living in a country called Uberland, consisting of $$$n$$$ towns, numbered from $$$1$$$ to $$$n$$$, and $$$n - 1$$$ bidirectional roads connecting these towns. It is possible to reach each town from any other. Each road connects two towns $$$a$$$ and $$$b$$$. Kuro loves walking and he is planning to take a walking marathon, in which he will choose a pair of towns $$$(u, v)$$$ ($$$u \neq v$$$) and walk from $$$u$$$ using the shortest path to $$$v$$$ (note that $$$(u, v)$$$ is considered to be different from $$$(v, u)$$$).
Oddly, there are 2 special towns in Uberland named Flowrisa (denoted with the index $$$x$$$) and Beetopia (denoted with the index $$$y$$$). Flowrisa is a town where there are many strong-scent flowers, and Beetopia is another town where many bees live. In particular, Kuro will avoid any pair of towns $$$(u, v)$$$ if on the path from $$$u$$$ to $$$v$$$, he reaches Beetopia after he reached Flowrisa, since the bees will be attracted with the flower smell on Kuro’s body and sting him.
Kuro wants to know how many pair of city $$$(u, v)$$$ he can take as his route. Since he’s not really bright, he asked you to help him with this problem.
The first line contains three integers $$$n$$$, $$$x$$$ and $$$y$$$ ($$$1 \leq n \leq 3 \cdot 10^5, 1 \leq x, y \leq n$$$, $$$x \ne y$$$) - the number of towns, index of the town Flowrisa and index of the town Beetopia, respectively.
$$$n - 1$$$ lines follow, each line contains two integers $$$a$$$ and $$$b$$$ ($$$1 \leq a, b \leq n$$$, $$$a \ne b$$$), describes a road connecting two towns $$$a$$$ and $$$b$$$.
It is guaranteed that from each town, we can reach every other town in the city using the given roads. That is, the given map of towns and roads is a tree.
A single integer resembles the number of pair of towns $$$(u, v)$$$ that Kuro can use as his walking route.
3 1 3
1 2
2 3
5
3 1 3
1 2
1 3
4
On the first example, Kuro can choose these pairs:
- $$$(1, 2)$$$: his route would be $$$1 \rightarrow 2$$$,
- $$$(2, 3)$$$: his route would be $$$2 \rightarrow 3$$$,
- $$$(3, 2)$$$: his route would be $$$3 \rightarrow 2$$$,
- $$$(2, 1)$$$: his route would be $$$2 \rightarrow 1$$$,
- $$$(3, 1)$$$: his route would be $$$3 \rightarrow 2 \rightarrow 1$$$.
Kuro can't choose pair $$$(1, 3)$$$ since his walking route would be $$$1 \rightarrow 2 \rightarrow 3$$$, in which Kuro visits town $$$1$$$ (Flowrisa) and then visits town $$$3$$$ (Beetopia), which is not allowed (note that pair $$$(3, 1)$$$ is still allowed because although Kuro visited Flowrisa and Beetopia, he did not visit them in that order).
On the second example, Kuro can choose the following pairs:
- $$$(1, 2)$$$: his route would be $$$1 \rightarrow 2$$$,
- $$$(2, 1)$$$: his route would be $$$2 \rightarrow 1$$$,
- $$$(3, 2)$$$: his route would be $$$3 \rightarrow 1 \rightarrow 2$$$,
- $$$(3, 1)$$$: his route would be $$$3 \rightarrow 1$$$.
【题意】
给一个$$$n$$$个点,$$$n$$$-1条路径的连通无向图(其实就是树),求不会先经过$$$x$$$再经过$$$y$$$的路径$$$(u, v)$$$的个数,其中$$$(u, v)$$$和$$$(v, u)$$$被视为不同的路径。
【分析】
由于是在树上的操作,从$$$u$$$ 到$$$v$$$的路径是被$$$u,v$$$唯一确定的,所以转而求端点对的个数。
总端点个数有3e5,但是需要检查的点只有2个,遍历所有路径并不划算,不如转而用排除法,总路径数 - 不符合的路径数 = 答案
总路径数很好算,只需要根据组合原理 = $$$A^2_n = n*(n-1)$$$。不符合的路径数可以这么求——把$$$x$$$到$$$y$$$的路径看成一个整体,其他部分看成挂在路径上的,分为:挂在$$$x$$$上的部分,挂在$$$y$$$上的部分,以及挂在这个路径其他点上的部分,把$$$x$$$与挂在$$$x$$$上的部分合称为为$$$x$$$部分,把$$$y$$$和$$$y$$$相连的部分合称为$$$y$$$部分。
一条先经过$$$x$$$再经过$$$y$$$的路径,必定起于与$$$x$$$部分,经过$$$x$$$到$$$y$$$的路径,最后止于与$$$y$$$部分。对于其他路径,起点不在$$$x$$$部分的,经过了$$$x$$$后就不会再经过$$$y$$$了,因为它一定是从$$$x->y$$$的路径的中部走到$$$x$$$的,在经过$$$x$$$后就不能再回头了;终点不在$$$y$$$部分的,自然不会经过y。
所以不符合的路径数=$$$x$$$部分的大小*$$$y$$$部分的大小

上个图演示一下:x是1,y是3,那么从$$$\{1,2,4,5\}$$$到$$$\{6,8,9\}$$$的路径都必须经过$$$1\to 3\to 6$$$,而只要起点不是$$$\{1,2,4,5\}$$$或者终点不是$$$\{6,8,9\}$$$的路径都是可以走的。所以答案是9*8 - 4*3 = 60。
【代码】
#include<stdio.h>
#include<vector>
using std::vector;
#define N_max 100005
typedef long long ll;
int x,y;
vector<int> node[300005];
ll ans, n, cnt[2] = { 0 };
int vis[300005]; //从x出发,搜索到y的路径并把经过的点全部标记为1
int findy(int cur) {
if (cur != y) {
vis[cur] = -1;
int next;
for (int t = 0; t < node[cur].size(); ++t) {
next = node[cur][t];
if (vis[next] != -1)
if (1 == findy(next)) {
vis[cur] = 1; return 1;
}
}
}
if (cur == y) {
vis[cur] = 1; return 1;
}
return 0;//因为是连通图,一定能找到y,返回0是防止编译器检查到没有返回值
} //搜索去掉x->y路径后,与x连通的点的个数
void calx(int cur) {
if (vis[cur] == 2)return;
vis[cur] = 2;
cnt[0]++;
int next;
for (int t = 0; t < node[cur].size(); ++t) {
next = node[cur][t];
if (vis[next] != 1)
calx(next);
}
}
//搜索去掉x->y路径后,与y连通的点的个数
void caly(int cur) {
if (vis[cur] == 2)return;
vis[cur] = 2;
cnt[1]++;
int next;
for (int t = 0; t < node[cur].size(); ++t) {
next = node[cur][t];
if (vis[next] != 1)
caly(next);
}
} //上面的计数可以用一个函数实现的,比赛的时候写的比较无脑:(
int main() {
int a1, a2;
scanf("%lld %d %d", &n,&x,&y);
for (int i = 0; i < n-1; ++i) {
scanf("%d %d", &a1, &a2);
node[a1].emplace_back(a2);
node[a2].emplace_back(a1);
}
ans = n*(n - 1);
findy(x);
calx(x);
caly(y);
printf("%lld\n",ans-cnt[0]*cnt[1]);
}
codeforces 979 C. Kuro and Walking Route的更多相关文章
- Codeforces Round #482 (Div. 2) C Kuro and Walking Route
C. Kuro and Walking Route time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces 979 D. Kuro and GCD and XOR and SUM(异或和,01字典树)
Codeforces 979 D. Kuro and GCD and XOR and SUM 题目大意:有两种操作:①给一个数v,加入数组a中②给出三个数x,k,s:从当前数组a中找出一个数u满足 u ...
- Kuro and Walking Route CodeForces - 979C (树上DFS)
Kuro is living in a country called Uberland, consisting of nn towns, numbered from 11to nn, and n−1n ...
- 【codeforces-482div2-C】Kuro and Walking Route(DFS)
题目链接:http://codeforces.com/contest/979/problem/C Kuro is living in a country called Uberland, consis ...
- Codeforces Round #482 (Div. 2) C 、 Kuro and Walking Route(dfs)979C
题目链接:http://codeforces.com/contest/979/problem/C 大致题意 给出n个点,有n-1个边将他们链接.给出x,y,当某一路径中出现x....y时,此路不通.路 ...
- Codeforces Round #482 (Div. 2) :C - Kuro and Walking Route
题目连接:http://codeforces.com/contest/979/problem/C 解题心得: 题意就是给你n个点,在点集中间有n-1条边(无重边),在行走的时候不能从x点走到y点,问你 ...
- codeforces 979C Kuro and Walking Route
题意: 给出一棵树,其中有两个点,x和y,限制走了x之后的路径上不能有y,问可以走的路径(u,v)有多少条,(u,v)和(v,u)考虑为两条不同的路径. 思路: 简单树形dp,dfs统计在x到y路径( ...
- 【Codeforces Round #482 (Div. 2) C】Kuro and Walking Route
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把x..y这条路径上的点标记一下. 然后从x开始dfs,要求不能走到那些标记过的点上.记录节点个数为cnt1(包括x) 然后从y开始 ...
- CodeForces 979 D Kuro and GCD and XOR and SUM
Kuro and GCD and XOR and SUM 题意:给你一个空数组. 然后有2个操作, 1是往这个数组里面插入某个值, 2.给你一个x, k, s.要求在数组中找到一个v,使得k|gcd( ...
随机推荐
- 相比之前其他几个入门的, 推荐: 简单vue2 入门教程
注意:Vue.js 不支持 IE8 及其以下 IE 版本. 具体可以看下 http://www.runoob.com/vue2/vue-tutorial.html 以下是学习过程 Vue ...
- java中方法调用在内存中的体现
在java中,方法以及局部变量(即在方法中声明的变量)是放在栈内存上的.当你调用一个方法时,该方法会放在调用栈的栈顶.栈顶的方法是目前正在执行的方法,直到执行完毕才会从栈顶释放.我们知道,栈是一种执行 ...
- 毕向东_Java基础视频教程第19天_IO流(18~19)
第19天-18-IO流(流操作规律 - 1) 通过三个步骤来明确"流操作"的规律: 明确数据流的"源和目的" 源, 输入流: InputStream/Reade ...
- SQL Server 2014 虚拟机的自动备份 (Resource Manager)
自动备份将在运行 SQL Server 2014 Standard 或 Enterprise 的 Azure VM 上自动为所有现有数据库和新数据库配置托管备份到 Azure. 这样,便可以配置使用持 ...
- UDF/UDAF开发总结
参考文章: https://www.cnblogs.com/itxuexiwang/p/6264547.html https://www.cnblogs.com/eRrsr/p/6096989.htm ...
- 10个值得深思的PHP面试题
第一个问题关于弱类型 $str1 = 'yabadabadoo'; $str2 = 'yaba'; if (strpos($str1,$str2)) { echo "/"" ...
- [BZOJ 1124][POI 2008] 枪战 Maf
1124: [POI2008]枪战Maf Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 659 Solved: 259[Submit][Status ...
- easy_encode_decode
s = input("输入:") result = '' for i in range(len(s)): result += chr(ord(s[i])^2000) print(r ...
- IOS 了解新技术(UIPresentationController,屏幕适配)
1.了解有什么新技术1> 苹果API文档 - General - Guides - iOSx API Diffs2> 观看WWDC会议视频 2.如何使用新技术 1> 自己根据API文 ...
- memcached的操作
memcached是一个高性能的分布式内存对象缓存系统,用于动态web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库次数,从而提高动态.数据库驱动网站的速度.memcached基于 ...