codeforces 979 C. Kuro and Walking Route
2 seconds
256 megabytes
standard input
standard output
Kuro is living in a country called Uberland, consisting of $$$n$$$ towns, numbered from $$$1$$$ to $$$n$$$, and $$$n - 1$$$ bidirectional roads connecting these towns. It is possible to reach each town from any other. Each road connects two towns $$$a$$$ and $$$b$$$. Kuro loves walking and he is planning to take a walking marathon, in which he will choose a pair of towns $$$(u, v)$$$ ($$$u \neq v$$$) and walk from $$$u$$$ using the shortest path to $$$v$$$ (note that $$$(u, v)$$$ is considered to be different from $$$(v, u)$$$).
Oddly, there are 2 special towns in Uberland named Flowrisa (denoted with the index $$$x$$$) and Beetopia (denoted with the index $$$y$$$). Flowrisa is a town where there are many strong-scent flowers, and Beetopia is another town where many bees live. In particular, Kuro will avoid any pair of towns $$$(u, v)$$$ if on the path from $$$u$$$ to $$$v$$$, he reaches Beetopia after he reached Flowrisa, since the bees will be attracted with the flower smell on Kuro’s body and sting him.
Kuro wants to know how many pair of city $$$(u, v)$$$ he can take as his route. Since he’s not really bright, he asked you to help him with this problem.
The first line contains three integers $$$n$$$, $$$x$$$ and $$$y$$$ ($$$1 \leq n \leq 3 \cdot 10^5, 1 \leq x, y \leq n$$$, $$$x \ne y$$$) - the number of towns, index of the town Flowrisa and index of the town Beetopia, respectively.
$$$n - 1$$$ lines follow, each line contains two integers $$$a$$$ and $$$b$$$ ($$$1 \leq a, b \leq n$$$, $$$a \ne b$$$), describes a road connecting two towns $$$a$$$ and $$$b$$$.
It is guaranteed that from each town, we can reach every other town in the city using the given roads. That is, the given map of towns and roads is a tree.
A single integer resembles the number of pair of towns $$$(u, v)$$$ that Kuro can use as his walking route.
3 1 3
1 2
2 3
5
3 1 3
1 2
1 3
4
On the first example, Kuro can choose these pairs:
- $$$(1, 2)$$$: his route would be $$$1 \rightarrow 2$$$,
- $$$(2, 3)$$$: his route would be $$$2 \rightarrow 3$$$,
- $$$(3, 2)$$$: his route would be $$$3 \rightarrow 2$$$,
- $$$(2, 1)$$$: his route would be $$$2 \rightarrow 1$$$,
- $$$(3, 1)$$$: his route would be $$$3 \rightarrow 2 \rightarrow 1$$$.
Kuro can't choose pair $$$(1, 3)$$$ since his walking route would be $$$1 \rightarrow 2 \rightarrow 3$$$, in which Kuro visits town $$$1$$$ (Flowrisa) and then visits town $$$3$$$ (Beetopia), which is not allowed (note that pair $$$(3, 1)$$$ is still allowed because although Kuro visited Flowrisa and Beetopia, he did not visit them in that order).
On the second example, Kuro can choose the following pairs:
- $$$(1, 2)$$$: his route would be $$$1 \rightarrow 2$$$,
- $$$(2, 1)$$$: his route would be $$$2 \rightarrow 1$$$,
- $$$(3, 2)$$$: his route would be $$$3 \rightarrow 1 \rightarrow 2$$$,
- $$$(3, 1)$$$: his route would be $$$3 \rightarrow 1$$$.
【题意】
给一个$$$n$$$个点,$$$n$$$-1条路径的连通无向图(其实就是树),求不会先经过$$$x$$$再经过$$$y$$$的路径$$$(u, v)$$$的个数,其中$$$(u, v)$$$和$$$(v, u)$$$被视为不同的路径。
【分析】
由于是在树上的操作,从$$$u$$$ 到$$$v$$$的路径是被$$$u,v$$$唯一确定的,所以转而求端点对的个数。
总端点个数有3e5,但是需要检查的点只有2个,遍历所有路径并不划算,不如转而用排除法,总路径数 - 不符合的路径数 = 答案
总路径数很好算,只需要根据组合原理 = $$$A^2_n = n*(n-1)$$$。不符合的路径数可以这么求——把$$$x$$$到$$$y$$$的路径看成一个整体,其他部分看成挂在路径上的,分为:挂在$$$x$$$上的部分,挂在$$$y$$$上的部分,以及挂在这个路径其他点上的部分,把$$$x$$$与挂在$$$x$$$上的部分合称为为$$$x$$$部分,把$$$y$$$和$$$y$$$相连的部分合称为$$$y$$$部分。
一条先经过$$$x$$$再经过$$$y$$$的路径,必定起于与$$$x$$$部分,经过$$$x$$$到$$$y$$$的路径,最后止于与$$$y$$$部分。对于其他路径,起点不在$$$x$$$部分的,经过了$$$x$$$后就不会再经过$$$y$$$了,因为它一定是从$$$x->y$$$的路径的中部走到$$$x$$$的,在经过$$$x$$$后就不能再回头了;终点不在$$$y$$$部分的,自然不会经过y。
所以不符合的路径数=$$$x$$$部分的大小*$$$y$$$部分的大小
上个图演示一下:x是1,y是3,那么从$$$\{1,2,4,5\}$$$到$$$\{6,8,9\}$$$的路径都必须经过$$$1\to 3\to 6$$$,而只要起点不是$$$\{1,2,4,5\}$$$或者终点不是$$$\{6,8,9\}$$$的路径都是可以走的。所以答案是9*8 - 4*3 = 60。
【代码】
#include<stdio.h>
#include<vector>
using std::vector;
#define N_max 100005
typedef long long ll;
int x,y;
vector<int> node[300005];
ll ans, n, cnt[2] = { 0 };
int vis[300005]; //从x出发,搜索到y的路径并把经过的点全部标记为1
int findy(int cur) {
if (cur != y) {
vis[cur] = -1;
int next;
for (int t = 0; t < node[cur].size(); ++t) {
next = node[cur][t];
if (vis[next] != -1)
if (1 == findy(next)) {
vis[cur] = 1; return 1;
}
}
}
if (cur == y) {
vis[cur] = 1; return 1;
}
return 0;//因为是连通图,一定能找到y,返回0是防止编译器检查到没有返回值
} //搜索去掉x->y路径后,与x连通的点的个数
void calx(int cur) {
if (vis[cur] == 2)return;
vis[cur] = 2;
cnt[0]++;
int next;
for (int t = 0; t < node[cur].size(); ++t) {
next = node[cur][t];
if (vis[next] != 1)
calx(next);
}
}
//搜索去掉x->y路径后,与y连通的点的个数
void caly(int cur) {
if (vis[cur] == 2)return;
vis[cur] = 2;
cnt[1]++;
int next;
for (int t = 0; t < node[cur].size(); ++t) {
next = node[cur][t];
if (vis[next] != 1)
caly(next);
}
} //上面的计数可以用一个函数实现的,比赛的时候写的比较无脑:(
int main() {
int a1, a2;
scanf("%lld %d %d", &n,&x,&y);
for (int i = 0; i < n-1; ++i) {
scanf("%d %d", &a1, &a2);
node[a1].emplace_back(a2);
node[a2].emplace_back(a1);
}
ans = n*(n - 1);
findy(x);
calx(x);
caly(y);
printf("%lld\n",ans-cnt[0]*cnt[1]);
}
codeforces 979 C. Kuro and Walking Route的更多相关文章
- Codeforces Round #482 (Div. 2) C Kuro and Walking Route
C. Kuro and Walking Route time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces 979 D. Kuro and GCD and XOR and SUM(异或和,01字典树)
Codeforces 979 D. Kuro and GCD and XOR and SUM 题目大意:有两种操作:①给一个数v,加入数组a中②给出三个数x,k,s:从当前数组a中找出一个数u满足 u ...
- Kuro and Walking Route CodeForces - 979C (树上DFS)
Kuro is living in a country called Uberland, consisting of nn towns, numbered from 11to nn, and n−1n ...
- 【codeforces-482div2-C】Kuro and Walking Route(DFS)
题目链接:http://codeforces.com/contest/979/problem/C Kuro is living in a country called Uberland, consis ...
- Codeforces Round #482 (Div. 2) C 、 Kuro and Walking Route(dfs)979C
题目链接:http://codeforces.com/contest/979/problem/C 大致题意 给出n个点,有n-1个边将他们链接.给出x,y,当某一路径中出现x....y时,此路不通.路 ...
- Codeforces Round #482 (Div. 2) :C - Kuro and Walking Route
题目连接:http://codeforces.com/contest/979/problem/C 解题心得: 题意就是给你n个点,在点集中间有n-1条边(无重边),在行走的时候不能从x点走到y点,问你 ...
- codeforces 979C Kuro and Walking Route
题意: 给出一棵树,其中有两个点,x和y,限制走了x之后的路径上不能有y,问可以走的路径(u,v)有多少条,(u,v)和(v,u)考虑为两条不同的路径. 思路: 简单树形dp,dfs统计在x到y路径( ...
- 【Codeforces Round #482 (Div. 2) C】Kuro and Walking Route
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把x..y这条路径上的点标记一下. 然后从x开始dfs,要求不能走到那些标记过的点上.记录节点个数为cnt1(包括x) 然后从y开始 ...
- CodeForces 979 D Kuro and GCD and XOR and SUM
Kuro and GCD and XOR and SUM 题意:给你一个空数组. 然后有2个操作, 1是往这个数组里面插入某个值, 2.给你一个x, k, s.要求在数组中找到一个v,使得k|gcd( ...
随机推荐
- 近期关于CI/CD策略以及git分支模型的思考
近两个月由于个人处于新环境.新项目的适应阶段,没怎么提笔写些文章.中间有好几个想法想记录下来分享,但受限于没有很好的时间段供自己总结思考(也可以总结为间歇性懒癌和剧癌发作),便啥也没有更新.借这个周末 ...
- 微信开发——微信公众平台实现消息接收以及消息的处理(Java版)
本文主要讲述了如何在微信公众平台实现消息接收以及消息的处理,使用java语言开发,现在把实现思路和代码整理出来分先给兄弟们,希望给他们带来帮助. 温馨提示: 这篇文章是依赖前几篇的文章的. 第一篇:微 ...
- 用POP动画编写带富文本的自定义动画效果
用POP动画编写带富文本的自定义动画效果 [源码] https://github.com/YouXianMing/UI-Component-Collection [效果] [特点] * 支持富文本 * ...
- 细嚼慢咽C++primer(5)——顺序容器
1 顺序容器的定义 容器是容纳特定类型对象的集合. 顺序容器:将单一类型元素聚集起来成为容器,然后根据位置来存储和访问这些元素,这就是顺序容器. 标准库的三种顺序容器类型:vector, list 和 ...
- lambdas vs. method groups
Update: Due to a glitch in my code I miscalculated the difference. It has been updated. See full his ...
- cetnos7下openresty使用luarocks 进行lua的包管理
先安装一下包管理工具 yum install luarocks lua-devel -y luarocks install lpack ln -s /usr/lib64/lua /usr/local/ ...
- python 获取当前目录,上级目录,上上级目录
import os print '***获取当前目录***' print os.getcwd() print os.path.abspath(os.path.dirname(__file__)) pr ...
- [朴孝敏/Loco][Nice Body]
歌词来源:http://music.163.com/#/song?id=28738294 作曲 : 勇敢兄弟/大象王国 [作曲 : 勇敢兄弟/大象王国] 作词 : 勇敢兄弟 [作词 : 勇敢兄弟] A ...
- 字符串String及字符Char的相关方法
一.字符串: 1.访问String中的字符: string本身可看作一个Char数组. string s = "hello world"; ; i < s.Length; i ...
- 【转】深入浅出 iOS 之生命周期
[iOS]深入浅出 iOS 之生命周期 深入浅出 iOS 之生命周期 http://blog.csdn.net/kesalin/article/details/6691766 罗朝辉(http:// ...