【51nod 1514】 美妙的序列
我们发现我们得正难则反
还是设\(f_i\)表示长度为\(i\)的序列个数
考虑容斥
\]
\(i!\)显然是总方案数,我们减掉不合法的方案数,显然\(1\)到\(j\)这些数强行合法,之后\(j+1\)到\(i\)在后面自由排列,由于在\(j\)后面这个位置没有一个数比之前的小,所以一定不合法,同时通过首次不合法的位置区分开不同的序列,从而做到不重不漏
但是上面有一个小问题就是\(f_0=0\),但是按照上面的递推数列来推会造成\(f_0=1\)
于是应该写成
\]
也就是
\]
设阶乘的生成函数是\(G(x)\)
就有
\]
\]
也就是对阶乘求一个逆
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=261244+1005;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const LL G[2]={3,332748118};
const LL mod=998244353;
LL fac[maxn],K[maxn],D[maxn],C[maxn],A[maxn],B[maxn];
int n,rev[maxn],ask[maxn],len,T;
inline LL ksm(LL a,LL b) {LL S=1;while(b) {if(b&1) S=S*a%mod;b>>=1;a=a*a%mod;}return S;}
inline void NTT(LL *f,int o) {
for(re int i=0;i<len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1) {
int ln=i>>1;LL og1=ksm(G[o],(mod-1)/i);
for(re int l=0;l<len;l+=i) {
LL t,og=1;
for(re int x=l;x<l+ln;x++) {
t=(og*f[ln+x])%mod;
f[ln+x]=(f[x]-t+mod)%mod;
f[x]=(f[x]+t)%mod;
og=(og*og1)%mod;
}
}
}
if(!o) return;
LL inv=ksm(len,mod-2);
for(re int i=0;i<len;i++) f[i]=(f[i]*inv)%mod;
}
inline void mul(int n,LL *A,LL *B) {
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(A,0),NTT(B,0);for(re int i=0;i<len;i++) A[i]=(A[i]*B[i])%mod;
NTT(A,1);for(re int i=n;i<len;i++) A[i]=0;
}
inline void Inv(int n,LL *A,LL *B) {
if(n==1) {B[0]=ksm(A[0],mod-2);return;}
Inv((n+1)>>1,A,B);
memset(C,0,sizeof(C));memset(D,0,sizeof(D));memset(K,0,sizeof(K));
for(re int i=0;i<n;i++) C[i]=K[i]=B[i],D[i]=A[i];
mul(n,C,K);mul(n,C,D);
for(re int i=0;i<n;i++) B[i]=(2ll*B[i]-C[i]+mod)%mod;
}
int main() {
T=read();
for(re int i=1;i<=T;i++)
ask[i]=read(),n=max(n,ask[i]+1);
A[0]=1;for(re int i=1;i<n;i++) A[i]=(A[i-1]*1ll*i)%mod;
Inv(n,A,B);
for(re int i=0;i<n;i++) B[i]=(mod-B[i])%mod;B[0]++;
for(re int i=1;i<=T;i++) printf("%lld\n",B[ask[i]]);
return 0;
}
【51nod 1514】 美妙的序列的更多相关文章
- 51nod 1514 美妙的序列
Description 长度为n的排列,且满足从中间任意位置划分为两个非空数列后,左边的最大值>右边的最小值.问这样的排列有多少个%998244353 题面 Solution 正难则反 \(f[ ...
- 51nod 1514 美妙的序列 分治NTT + 容斥
Code: #include<bits/stdc++.h> #define ll long long #define mod 998244353 #define maxn 400000 # ...
- NTT【51nod】1514 美妙的序列
题意:1~n 的全排列中,有多少个排列满足任意从中间切成两段后,左边段的最大值大于右边段的最小值? 例如:n为3时有3种 2 3 1 3 1 2 3 2 1 解释:比如 2 3 1 (2) (3 1) ...
- Solution -「51nod 1514」美妙的序列
\(\mathcal{Description}\) Link. 称排列 \(\{p_n\}\) 美妙,当且仅当 \((\forall i\in[1,n))(\max_{j\in[1,i]}\{ ...
- [51nod1514] 美妙的序列
Description 如果对于一个 \(1\sim n\) 的排列满足: 在 \(1\sim n-1\) 这些位置之后将序列断开,使得总可以从右边找一个数,使得该数不会比左边所有数都大,则称该序列是 ...
- 51nod 1510 最小化序列 | DP 贪心
题目描述 现在有一个长度为n的数组A,另外还有一个整数k.数组下标从1开始. 现在你需要把数组的顺序重新排列一下使得下面这个的式子的值尽可能小. ∑|A[i]−A[i+k]| 特别的,你也可以不对数组 ...
- 【51nod】1251 Fox序列的数量
题解 容斥题 我们枚举出现次数最多的数出现了K次 然后我们需要计算的序列是所有数字出现个数都不超过K - 1次 我们枚举不合法的数字的数目j,说明这个排列里除了我们固定出现K次的数至少有j个数是不合法 ...
- 【51nod 1251】 Fox序列的数量(以及带限制插板法讲解)
为什么网上没有篇详细的题解[雾 可能各位聚聚觉得这道题太简单了吧 /kk 题意 首先题目是求满足条件的序列个数,条件为:出现次数最多的数仅有一个 分析 感谢 刚睡醒的 JZ姐姐在咱写题解忽然陷入自闭的 ...
- 【51NOD 1478】括号序列的最长合法子段
很恶心啊,一道水题改了半天,主要是各种细节没有注意到,包括左括号剩余时有可能会出错的情况,需要从后往前扫 贡献一组测试数据: ((()))())(())(( 答案:8 1 #include<cs ...
随机推荐
- C# DateTime类型和sqlserver DateTime精度不同
在最近的项目中, 有个关于时间的功能.一个请假的时间.前端选择的时候只有日期.所以比如请一天假就是选2017-8-15和2017-8-15,这样算请这一天的假.但是后台存入数据库时我不能就存2017- ...
- xsl 和xml transform方法的调用
xsl 和xml生成html,兼容多个浏览器 <html> <head> <meta charset="UTF-8"/> </head&g ...
- 15、IO (转换流、缓冲流)
转换流概述 * A: 转换流概述 * a: 转换流概述 * OutputStreamWriter 是字符流通向字节流的桥梁:可使用指定的字符编码表,将要写入流中的字符编码成字节 * 将字符串按照指定的 ...
- 关于一次美团java程序员招聘面试的经历
美团一面: 中间省略掉大概几个问题,因为我不记得了,下面记得的基本都是我没怎么答好的. 1.了解SOA,微服务吗? 2.分布式系统如何负载均衡?如何确定访问的资源在哪个服务器上? 一.轮询.二.随机. ...
- sublime 在Mac终端下设置快捷打开方式
vi ~/.zshrc alias subl='open -a "Sublime Text"' source ~/.zshrc 打开 ~/.zshrc,然后写入第二行,然后执行第三 ...
- 用css动画写一个下红包雨的效果
红包雨的功能相信大家都做过,不过一般都是用js计算的,闲着无聊用css的样式写了类似的,主要用的是css的transform和animation结合.大概代码逻辑: @keyframes startH ...
- C#-求int数组中连续偶数列的个数
例如:[3, 3, 2, 2, 2, 4, 3, 5, 4, 6, 3]=>2,2,2,4;4,6 结果为2 [3, 3, 2,3, 2, 2, 4, 3, 5, 4, 6, 3]=&g ...
- Python - Exceptions
官方文档:https://docs.python.org/3/library/exceptions.html 1. 使用try...except... 2. 输出错误信息的方式为: try: curs ...
- 【眼见为实】自己动手实践理解数据库REPEATABLE READ && Next-Key Lock
[REPEATABLE READ] 首先设置数据库隔离级别为可重复读(REPEATABLE READ): set global transaction isolation level REPEATAB ...
- spring+quarts常见问题
javax/transaction/UserTransactionCaused by: java.lang.NoClassDefFoundError: javax/transaction/UserTr ...