ROC曲线【转】
受试者工作特征曲线(receiver operating characteristic curve, 简称ROC曲线),又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反应着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。接受者操作特性曲线就是以虚拟概率为横轴,击中概率为纵轴所成的坐标图,和被试在特定刺激条件下由于采用不同的判断标准得出的不同结果画出的曲线。
概念:ROC曲线是根据一系列不同的二分类方式(分界值或决定域),以真阳性率(灵敏度)为纵坐标
ROC曲线的例子
考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。
TP:正确肯定的数目;
FN:漏报,没有正确找到的匹配的数目;
FP:误报,给出的匹配是不正确的;
TN:正确拒绝的非匹配对数;
列联表如下表所示,1代表正类,0代表负类。
| 预测 | ||||
| 1 | 0 | 合计 | ||
| 实际 | 1 | True Positive(TP) | False Negative(FN) | Actual Positive(TP+FN) |
| 0 | False Positive(FP) | True Negative(TN) | Actual Negative(FP+TN) | |
| 合计 | Predicted Positive(TP+FP) | Predicted Negative(FN+TN) | TP+FP+FN+TN |
从列联表引入两个新名词。其一是真正类率(true positive rate ,TPR), 计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。另外一个是负正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。还有一个真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1-FPR。

其中,两列True matches和True non-match分别代表应该匹配上和不应该匹配上的
两行Pred matches和Pred non-match分别代表预测匹配上和预测不匹配上的

在一个二分类模型中,对于所得到的连续结果,假设已确定一个阀值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阀值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例 的比类,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC,ROC曲线可以用于评价一个分类器。

ROC曲线和它相关的比率
(a)理想情况下,TPR应该接近1,FPR应该接近0。
ROC曲线上的每一个点对应于一个threshold,对于一个分类器,每个threshold下会有一个TPR和FPR。
比如Threshold最大时,TP=FP=0,对应于原点;Threshold最小时,TN=FN=0,对应于右上角的点(1,1)
(b)P和N得分不作为特征间距离d的一个函数,随着阈值theta增加,TP和FP都增加
Receiver Operating Characteristic,翻译为"接受者操作特性曲线",够拗口的。曲线由两个变量1-specificity 和 Sensitivity绘制. 1-specificity=FPR,即负正类率。Sensitivity即是真正类率,TPR(True positive rate),反映了正类覆盖程度。这个组合以1-specificity对sensitivity,即是以代价(costs)对收益(benefits)。
此外,ROC曲线还可以用来计算“均值平均精度”(mean average precision),这是当你通过改变阈值来选择最好的结果时所得到的平均精度(PPV).
下表是一个逻辑回归得到的结果。将得到的实数值按大到小划分成10个个数 相同的部分。
| Percentile | 实例数 | 正例数 | 1-特异度(%) | 敏感度(%) |
| 10 | 6180 | 4879 | 2.73 | 34.64 |
| 20 | 6180 | 2804 | 9.80 | 54.55 |
| 30 | 6180 | 2165 | 18.22 | 69.92 |
| 40 | 6180 | 1506 | 28.01 | 80.62 |
| 50 | 6180 | 987 | 38.90 | 87.62 |
| 60 | 6180 | 529 | 50.74 | 91.38 |
| 70 | 6180 | 365 | 62.93 | 93.97 |
| 80 | 6180 | 294 | 75.26 | 96.06 |
| 90 | 6180 | 297 | 87.59 | 98.17 |
| 100 | 6177 | 258 | 100.00 | 100.00 |
其正例数为此部分里实际的正类数。也就是说,将逻辑回归得到的结 果按从大到小排列,倘若以前10%的数值作为阀值,即将前10%的实例都划归为正类,6180个。其中,正确的个数为4879个,占所有正类的 4879/14084*100%=34.64%,即敏感度;另外,有6180-4879=1301个负实例被错划为正类,占所有负类的1301 /47713*100%=2.73%,即1-特异度。以这两组值分别作为x值和y值,在excel中作散点图。,假阳性率(1-特异度)为横坐标绘制的曲线。
转自 http://blog.csdn.net/abcjennifer/article/details/7359370
ROC曲线【转】的更多相关文章
- ROC曲线、PR曲线
在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图. 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像. ...
- 精确率与召回率,RoC曲线与PR曲线
在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...
- 【数据挖掘】朴素贝叶斯算法计算ROC曲线的面积
题记: 近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用 ...
- PR曲线,ROC曲线,AUC指标等,Accuracy vs Precision
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又 ...
- 机器学习之分类器性能指标之ROC曲线、AUC值
分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性 ...
- [zz] ROC曲线
wiki https://zh.wikipedia.org/wiki/ROC%E6%9B%B2%E7%BA%BF 在信号检测理论中,接收者操作特征曲线(receiver operating chara ...
- ROC曲线、AUC、Precision、Recall、F-measure理解及Python实现
本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AU ...
- ROC曲线与AUC值
本文根据以下文章整理而成,链接: (1)http://blog.csdn.net/ice110956/article/details/20288239 (2)http://blog.csdn.net/ ...
- ROC曲线绘制
ROC 曲线绘制 个人的浅显理解:1.ROC曲线必须是针对连续值输入的,通过选定不同的阈值而得到光滑而且连续的ROC曲线,故通常应用于Saliency算法评价中,因为可以选定0~255中任意的值进行阈 ...
- ROC曲线
1.混淆矩阵(confusion matrix) 针对预测值和真实值之间的关系,我们可以将样本分为四个部分,分别是: 真正例(True Positive,TP):预测值和真实值都为1 ...
随机推荐
- 20155311 实验三 敏捷开发与XP实践 实验报告
20155311 实验三 敏捷开发与XP实践 实验报告 实验内容 XP基础 xp核心工具 相关工具 实验要求 没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim ...
- 20155322 《Java程序设计》课堂实践项目 数据库-3-4
20155322 <Java程序设计>课堂实践项目 数据库-3-4 数据库-3 实践要求 参考教材代码完成下面的要求,提交能连接到world的截图(有学号水印),并提交代码的码云链接.查询 ...
- 什么是thinkphp
ThinkPHP是一个快速.简单的基于MVC和面向对象的轻量级PHP开发框架,遵循Apache2开源协议发布,从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能和至简的代码的同时,尤其注重开发体验 ...
- 单线程的redis为什么吞吐量可以这么大
原文:单线程的redis为什么吞吐量可以这么大 一.Redis的高并发和快速原因 1.redis是基于内存的,内存的读写速度非常快: 2.redis是单线程的,省去了很多上下文切换线程的时间: 3.r ...
- 我们一起学习WCF 第十篇Wcf中实现事务
数据一致性在工作中显得非常重要,有时候我们库中出现脏数据导致程序报错,但是又很难发现这样的错误,所以为了数据的完整性建议在程序中加入事物. 什么是事物:我们都有团队合作吧,比喻团队有3个人,a负责设计 ...
- Python爬虫与反爬虫(7)
[Python基础知识]Python爬虫与反爬虫(7) 很久没有补爬虫了,相信在白蚁二周年庆的活动大厅比赛中遇到了关于反爬虫的问题吧 这节我会做个基本分享. 从功能上来讲,爬虫一般分为数据采集,处理, ...
- C#匿名参数(转载too)
匿名方法是在初始化委托时内联声明的方法. 例如下面这两个例子: 不使用匿名方法的委托: using System; using System.Collections.Generic; using Sy ...
- Switch Game :因子数
A - Switch Game Problem Description There are many lamps in a line. All of them are off at first. A ...
- Java线上应用故障排查之一:高CPU占用 (转)
一个应用占用CPU很高,除了确实是计算密集型应用之外,通常原因都是出现了死循环. (友情提示:本博文章欢迎转载,但请注明出处:hankchen,http://www.blogjava.net/hank ...
- php异步学习(1)
1.为啥PHP需要异步操作? 一般来说PHP适用的场合是web页面展示等耗时比较短的任务,如果对于比较花时间的操作如resize图片.大数据导入.批量发送EDM.SMS等,就很容易出现操作超时情况.你 ...