【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分
题目描述

输入
输出
输出1个实数,表示树影的面积。四舍五入保留两位小数。
样例输入
2 0.7853981633
10.0 10.00 10.00
4.00 5.00
样例输出
171.97
题解
自适应Simpson积分
根据数学知识:在平行光投影下,圆的半径保持不变,位置为 高度/tanα ;圆台/圆锥的侧面投影为两圆/一圆一点的外公切线。
那么先将圆的位置求出,然后依次求相邻两圆公切线并将线段记录,此时注意内切/内含的两个圆是没有外公切线的。这里求公切线使用了射影定理。
如下图:

其中黑色的是投影后的圆,红色的是公切线段。
那么我们要求的就是最外层轮廓所围成的图形的面积。由于对称性因此只需要求出上半部分然后乘2。
注意到上半部分的外层轮廓形成了连续的一段函数,因此考虑使用自适应Simpson积分来求面积。
Simpson积分:对于三次及以下多项式函数,有 $\int_l^rf(x)dx=(r-l)·\frac {f(l)+f(r)+4f(\frac{l+r}2)}6$ 。
自适应Simpson积分:对于任意连续函数 $f(x)$ 求 $\int_l^rf(x)dx$,先将其当作三次函数使用Simpson积分求出 $[l,r]$ 、$[l,mid]$ 和 $[mid+r]$ 的面积,如果左半部分和右半部分面积之和与总面积之差满足精度要求则返回,否则递归左右并求和作为总面积。
本质上相当于插一个三次函数,如果差得比较多则递归左右。
回过头来看本题,问题变为:给出 $x$ ,求 $f(x)$ 。显然可以在每个圆和每条线段上(如果存在)求出 $x$ 的函数值,取最大值即为 $f(x)$ 。
注意精度要设得小一些,因为求和的部分使误差增大。
时间复杂度 $O(跑得过)$ 。
#include <cmath>
#include <cstdio>
#include <algorithm>
#define N 510
#define eps 1e-5
using namespace std;
struct circle
{
double x , r;
}c[N];
struct line
{
double x1 , y1 , x2 , y2;
}l[N];
double h[N];
int n , m;
inline double squ(double x)
{
return x * x;
}
inline double f(double p)
{
int i;
double ans = 0;
for(i = 1 ; i <= n ; i ++ )
if(p >= c[i].x - c[i].r && p <= c[i].x + c[i].r)
ans = max(ans , sqrt(squ(c[i].r) - squ(p - c[i].x)));
for(i = 1 ; i <= m ; i ++ )
if(p >= l[i].x1 && p <= l[i].x2)
ans = max(ans , l[i].y1 + (p - l[i].x1) * (l[i].y2 - l[i].y1) / (l[i].x2 - l[i].x1));
return ans;
}
inline double calc(double l , double r)
{
return (r - l) * (f(l) + f(r) + f((l + r) / 2) * 4) / 6;
}
double simpson(double l , double r , double s)
{
double mid = (l + r) / 2 , x = calc(l , mid) , y = calc(mid , r);
if(fabs(x + y - s) <= eps) return s;
return simpson(l , mid , x) + simpson(mid , r , y);
}
int main()
{
int i;
double alpha , t , L = 1e9 , R = -1e9;
scanf("%d%lf" , &n , &alpha) , n ++ ;
for(i = 1 ; i <= n ; i ++ ) scanf("%lf" , &h[i]) , h[i] += h[i - 1] , c[i].x = h[i] / tan(alpha);
for(i = 1 ; i < n ; i ++ ) scanf("%lf" , &c[i].r);
for(i = 1 ; i < n ; i ++ )
{
if(c[i + 1].x - c[i].x > fabs(c[i + 1].r - c[i].r))
{
m ++ ;
t = c[i].r * (c[i].r - c[i + 1].r) / (c[i + 1].x - c[i].x) , l[m].x1 = c[i].x + t , l[m].y1 = sqrt(squ(c[i].r) - squ(t));
t = c[i + 1].r * (c[i].r - c[i + 1].r) / (c[i + 1].x - c[i].x) , l[m].x2 = c[i + 1].x + t , l[m].y2 = sqrt(squ(c[i + 1].r) - squ(t));
}
}
for(i = 1 ; i <= n + 1 ; i ++ ) L = min(L , c[i].x - c[i].r) , R = max(R , c[i].x + c[i].r);
printf("%.2lf\n" , 2 * simpson(L , R , calc(L , R)));
return 0;
}
【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分的更多相关文章
- [BZOJ 1502] [NOI2005] 月下柠檬树 【Simpson积分】
题目链接: BZOJ - 1502 题目分析 这是我做的第一道 Simpson 积分的题目.Simpson 积分是一种用 (fl + 4*fmid + fr) / 6 * (r - l) 来拟合 fl ...
- [BZOJ1502]月下柠檬树(自适应辛普森积分)
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1387 Solved: 739[Submit][Status] ...
- [日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法
关于自适应Simpson法的介绍可以去看我的另一篇blog http://www.lydsy.com/JudgeOnline/problem.php?id=1502 题意:空间里圆心在同一直线上且底面 ...
- BZOJ 1502 月下柠檬树(simpson积分)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1502 题意:给出如下一棵分层的树,给出每层的高度和每个面的半径.光线是平行的,与地面夹角 ...
- BZOJ1502: [NOI2005]月下柠檬树
Simpson法相当好用啊!神奇的骗分算法! /************************************************************** Problem: 1502 ...
- bzoj 1502 月下柠檬树【Simpson积分】
投影到地面之后,会发现圆形在平行光下面积和形状是不会变的,也就是所要求的图形是若干个圆和把相邻两个圆连起来的公切线所组成的. 公切线和圆间距瞎求一下就行,注意要去掉被完全覆盖的圆 然后simpson即 ...
- 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分
[BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...
- 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1017 Solved: 562[Submit][Status] ...
- BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1070 Solved: 596[Submit][Status] ...
随机推荐
- php 换行 PHP_EOL
在unix世界换行就用/n来代替,但是windows为了体现他的不同,就用/r/n,更有意思的是在mac中用/r.因此unix系列用 /n,windows系列用 /r/n,mac用 /r,这样就用你写 ...
- 【bzoj4827】[Hnoi2017]礼物 FFT
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天 ...
- DSP5509的USB协议开发
1. 使用的板子 2. 原理图相关,这个1.5K的上拉电阻,全速和高速上拉在D+,低速上拉在D- 3. 中断处理函数没有搞明白是什么意思?这个工程我怎么基本看不懂? interrupt void US ...
- 通过redis实现session共享-php
<?php class redisSession{ /** * 保存session的数据库表的信息 */ private $_options = array( 'handler' => n ...
- 五、Django之路由系统
1.普通路由匹配 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL模式以及要为该URL模式调用的视图函数之间的映射表:它就是以这种方式告诉Django,用哪个URL调用 ...
- 基于ejabberd简单实现xmpp群聊离线消息
首先,xmpp服务器是基于ejabberd.离线消息模块是mod_interact,原地址地址:https://github.com/adamvduke/mod_interact: 修改后实现群聊离线 ...
- 帮你理解学习lambda式
概要 窗前明月光,疑是地上霜,举头望明月,低头思故乡.别误会这是开头诗与以下文章没任何关系. 今天我想给大家说道说道 C# lambda表达式,不废话,下面开始说道! lambda lambd ...
- 内容安全策略(CSP)
内容安全策略(CSP),其核心思想十分简单:网站通过发送一个 CSP 头部,来告诉浏览器什么是被授权执行的与什么是需要被禁止的.其被誉为专门为解决XSS攻击而生的神器. 1.CSP是什么 CSP指的是 ...
- appium -- 页面出现弹窗,关闭后,无法识别页面元素(转)
原文:https://www.cnblogs.com/leavescy/p/9733001.html; 1. 问题:如图所示:在修改手势密码的过程中,点击了返回按钮后,弹出该弹窗:点击继续设置后,就发 ...
- Android 测试 之adb shell
一.发送键盘事件: 命令格式1:adb shell input keyevent "value" 其中value以及对应的key code如下表所列: KeyEvent Value ...