线性代数的本质与几何意义 02. 线性组合、张成的空间、基(3blue1brown 咪博士 图文注解版)
1. 线性组合
接下来我们要换一个角度来看向量。以二维平面直角坐标系为例,i, j 分别是沿 2 个坐标轴方向的单位向量。那么坐标平面上的其他向量,例如 [ 3 -2 ] [3−与 i, j 是什么关系呢?

将向量 i 沿水平向右的方向拉升 3 倍,向量 j 沿竖直向下的方向拉升 2 倍

这样,我们可以将向量 [ 3 -2 ] [3−2] 看成是将向量 i, j 缩放后再相加的结果

向量 i, j 称为基向量,其他向量都可以通过对基向量缩放再相加的方法构造出来。基向量缩放的倍数对应向量的各个分量,即向量对应的坐标。
我们可以通过选择不同的基向量来构造新的坐标系。例如,我们可以选择指向右上方的向量 v 和 指向右下方的向量 w 作为基向量。

对这组新的基向量进行缩放再相加,同样也能构造出其他的向量

一组基向量就对应一个坐标系,选择不同的基向量就构造出了不同的坐标系。同一个向量,在不同的坐标系下(即采用不同的基向量),其坐标值也要相应地发生变化。后面,咪博士会进一步谈到具体如何变换。
上面,反复出现 “将向量进行缩放再相加” 的操作,这样的操作,我们称之为 线性组合

2. 向量张成的空间
在二维平面中,选取 2 个向量,然后考虑它们所有可能的线性组合,我们会得到什么呢?这取决于我们选择的 2 个向量。
通常情况下,我们会得到整个平面

如果选择的 2 个向量,恰好共线的话,那它们的线性组合就被局限在一条过原点的直线上了

最极端的情况是,选择的 2 个向量都是零向量,那么它们的线性组合就只可能是零向量了

向量 v, w 的 全部线性组合 所构成的向量集合称为向量 v, w 所 张成的空间

还记得前面的教程中,咪博士谈到数乘和加法是向量 2 个最基础的运算吗?当我们谈论向量所张成的空间时,我们实际上就是在问,仅仅通过数乘和加法 2 种基础运算,你能获得的所有可能的向量集合是什么。
在线性代数中,向量的起点始终固定在原点的位置,因此 向量的终点就唯一确定了向量本身。这样,我们便可以将向量看成是空间中的点(即向量的终点)。
3. 线性相关、线性无关
将线性组合的想法扩展到 3 维空间中。想象 3 个 3 维向量,它们所张成的空间会是什么样的呢?这取决于我们选择的 3 个向量。
- a. 通常情况下,我们会得到整个 3 维空间
- b. 当选择的 3 个向量共面时,它们所张成的空间是一个过原点的平面
- c. 当 3 个向量共线时,它们所张成的空间是一条过原点的直线
- d. 当 3 个向量都是零向量时,它们所张成的空间只包含零向量
显然,在考虑向量所张成的空间时,有些向量是多余的。例如,情况 b ,确定一个平面只需要 2 个向量,而我们却用了 3 个向量,这意味着,有 1 个向量是多余的;情况 c,确定一条直线只需要 1 个向量就够了,而我们用了 3 个向量,其中有 2 个向量是多余的。数学上,我们用线性相关来描述这样的现象。
当我们说几个向量所构成的向量组线性相关时,意思是向量组中的(任意)一个向量都可以用向量组中其他向量的线性组合来表示出来。换句话讲,这个向量已经落在其他向量所张成的空间中,它对整个向量组张成的空间是没有贡献的,把它从向量组中拿掉,并不会影响向量组所张成的空间。

线性无关指的是,向量组中的(任意)一个向量无法用向量组中其他向量的线性组合表示出来。换句话说,向量组中的每一个向量都为向量组所张成的空间贡献了一个维度,每一个向量都缺一不可,少了任何一个向量,都会改变向量组所张成的空间。

4. 基的严格定义
最后,我们把本节相关的概念串起来,形成基的严格定义:
向量空间的一组 基 是 张成 该空间的一个 线性无关 向量集

原文链接:http://www.ipaomi.com/2017/11/21/线性代数的本质与几何意义-02-线性组合、张成的空/
线性代数的本质与几何意义 02. 线性组合、张成的空间、基(3blue1brown 咪博士 图文注解版)的更多相关文章
- 线性代数的本质与几何意义 03. 矩阵与线性变换 (3blue1brown 咪博士 图文注解版)
首先,恭喜你读到了咪博士的这篇文章.本文可以说是该系列最重要.最核心的文章.你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么.读完咪博士的这篇文章,你一定会有一种醍醐灌顶.豁然开朗的感觉! ...
- 线性代数的本质与几何意义 01. 向量是什么?(3blue1brown 咪博士 图文注解版)
向量是线性代数最基础.最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理.数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是 ...
- 线性代数的28法则:作为程序员掌握这些API就够用了……
目录 1. 向量 & 矩阵 1.1. 问: np.ndarray 与 np.matrix 的区别 1.2. 向量空间 2. 算术运算 2.1. 为什么线性代数定义的乘积运算不按照加法的规则(按 ...
- 线性代数的视角理解LSR(least square regression)的参数评估算法本质
https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f ...
- 02两栈共享空间_DoubleStack--(栈与队列)
#include "stdio.h" #include "stdlib.h" #include "io.h" #include " ...
- [树莓派(raspberry pi)] 02、PI3安装openCV开发环境做图像识别(详细版)
前言 上一篇我们讲了在linux环境下给树莓派安装系统及入门各种资料 ,今天我们更进一步,尝试在PI3上安装openCV开发环境. 博主在做的过程中主要参考一个国外小哥的文章(见最后链接1),不过其教 ...
- Java 使用 Apache commons-math3 线性拟合、非线性拟合实例(带效果图)
Java 使用 CommonsMath3 的线性和非线性拟合实例,带效果图 例子查看 GitHub Gitee 运行src/main/java/org/wfw/chart/Main.java 即可查看 ...
- 带你领会 线性代数 微积分的本质 3blue1brown 动画效果帅出天际
前段时间在 哔哩哔哩 上偶然发现了 3blue1brown 精美的动画,配上生动的讲解,非常适合帮助建立数学的形象思维 其中两大系列,非常值得反复观看: 线性代数的本质(Essence of line ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
随机推荐
- docker启动失败(can't create unix socket /var/run/docker.sock: is a directory)
现象 # service docker start Redirecting to /bin/systemctl start docker.service Job for docker.service ...
- WordPress数据库及各表结构分析
默认WordPress一共有以下11个表.这里加上了默认的表前缀 wp_ . wp_commentmeta:存储评论的元数据wp_comments:存储评论wp_links:存储友情链接(Blogro ...
- 崩 oj 1768 最大子矩阵
描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵.比如,如下4 * 4的矩阵0 -2 -7 0 9 2 -6 2 -4 1 - ...
- AI Factorization Machine(FM)算法
FM算法 参考链接: https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
- 字符串阵列String[]转换为整型阵列Int[]
原始数据: string input = "3,7,2,8,1,9,1,34,67,78,22"; 要处理为: " }; 最终处理为: , , , , , , , , , ...
- 【JVM.4】调优案例分析与实战
之前已经介绍过处理Java虚拟机内存问题的知识与工具,在处理实际项目的问题时,除了知识与工具外,经验同样是一个很重要的因素.本章会介绍一些具有代表性的案例. 本章的内容推荐还是原文全篇看完的好,实在不 ...
- FreeCAD源码初步了解
FreeCAD简介 FreeCAD是基于OpenCASCADE的开源CAD/CAE软件,完全开源(GPL的LGPL许可证),官方源码地址,详情可参考维基百科,百度百科等等. 如果要编译FreeCAD, ...
- SQL基础语句总结
前言: SQL 是用于访问和处理数据库的标准的计算机语言. 什么是 SQL? SQL 指结构化查询语言SQL 使我们有能力访问数据库SQL 是一种 ANSI 的标准计算机语言编者注:ANSI,美国国家 ...
- 熟记这些git命令,你就是大神
1.git log 查看 提交历史 默认不用任何参数的话,git log 会按提交时间列出所有的更新,最近的更新排在最上面 2.git log -p -2 常用 -p 选项展开显示每次提交的内容差异 ...
- rem、em、px、pt及网站字体大小设配
rem:相对的只是HTML根元素字体尺寸; em:相对于当前对象内文本的字体尺寸(值不是固定且继承父级元素的字体大小); px像素(Pixel):对于显示器屏幕分辨率而言的; pt:point,是印刷 ...