洛谷P2148 [SDOI2009]E&D(博弈论)
先安利蒟蒻仍在施工的博弈论总结
首先根据题目,石子被两两分组了,于是根据SG定理,我们只要求出每一组的SG值再全部异或起来就好啦。
把每一对数看成一个ICG,首先,我们尝试构造游戏的状态转移DAG。把一堆石子拿掉,另一堆任意拆成两堆,等于说由状态\((a,b)\)可以转移到\(\{(c,d),c+d=a\)或\(c+d=b\}\)
一眼看不出来这是要干神马。。。。。。然后开始打表。其实打表的方式可以更简单。首先,观察上式,对于每一个a,所有\(c+d=a\)的\((c,d)\)的\(SG\)值集合我们可以先用一个bitset存起来,这样当我们求\((a,b)\)的\(SG\)值时我们直接将\(a\)和\(b\)对应的两个集合并起来再求\(mex\)就好啦。于是得到了打表代码(bitset实在是太好用啦)
#include<cstdio>
#include<bitset>
#include<iostream>
using namespace std;
const int N=10,M=N+1;//随便调大小
typedef bitset<M> B;
B s[M];
int ans[M][M];
inline int mex(B b){//干什么就不解释了吧
int i=0;
while(b[i])++i;
return i;
}
int main(){
int i,j,k;
for(i=2;i<=N;++i)
for(j=1,k=i-1;k;++j,--k)
s[i].set(ans[j][k]=mex(s[j]|s[k]));//枚举合并
for(i=0;i<N;++i)printf("%3d",i);puts("");
for(i=1;i<N;++i){//输出矩阵
printf("%2d:",i);
for(j=1;i+j<=N;++j)
printf("%3d",ans[i][j]);
puts("");
}
for(i=1;i<=N;++i){//输出对于每一个a,所有c+d=a的(c,d)的SG值集合
printf("%2d:SG%d ",i,mex(s[i]));
cout<<s[i]<<endl;
}
return 0;
}
打出来的答案矩阵
0: 1 2 3 4 5 6 7 8 9
1: 0 1 0 2 0 1 0 3 0
2: 1 1 2 2 1 1 3 3
3: 0 2 0 2 0 3 0
4: 2 2 2 2 3 3
5: 0 1 0 3 0
6: 1 1 3 3
7: 0 3 0
8: 3 3
9: 0
怎么看也没看出什么特别的地方
但接着看看对于每一个\(a\),所有\(c+d=a\)的\((c,d)\)的SG值集合
1:SG0 00000000000
2:SG1 00000000001
3:SG0 00000000010
4:SG2 00000000011
5:SG0 00000000100
6:SG1 00000000101
7:SG0 00000000110
8:SG3 00000000111
9:SG0 00000001000
10:SG1 00000001001
诶,\(S_i\)等于\(i-1\)的二进制表示!!(我太弱了,不会证)
那对于询问的每一对数\((i,j)\),直接求\((i-1)\mid(j-1)\)(按位或)的二进制的最低的0所在的二进制位,把所有的异或起来就好啦
代码应该很好懂啊,直接位运算搞一搞就行啦
#include<cstdio>
#define R register int
const int SZ=1<<21;
char ibuf[SZ],*pi=ibuf-1;
inline int in(){
while(*++pi<'-');
R x=*pi&15;
while(*++pi>'-')x*=10,x+=*pi&15;
return x;
}
int main(){
fread(ibuf,1,SZ,stdin);
R T=in(),n,x,cnt,ans;
while(T--){
ans=0;
n=in()>>1;
while(n--){
cnt=0;
x=(in()-1)|(in()-1);
while(x&1)++cnt,x>>=1;
ans^=cnt;
}
puts(ans?"YES":"NO");
}
return 0;
}
洛谷P2148 [SDOI2009]E&D(博弈论)的更多相关文章
- 洛谷P1972 [SDOI2009]HH的项链 题解
[SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不 ...
- BZOJ1880或洛谷2149 [SDOI2009]Elaxia的路线
BZOJ原题链接 洛谷原题链接 显然最长公共路径是最短路上的一条链. 我们可以把最短路经过的边看成有向边,那么组成的图就是一张\(DAG\),这样题目要求的即是两张\(DAG\)重合部分中的最长链. ...
- BZOJ1227或洛谷2154 [SDOI2009]虔诚的墓主人
BZOJ原题链接 洛谷原题链接 又是扫描线,题解可看大佬的博客(太懒了不想打) #include<cstdio> #include<algorithm> using names ...
- BZOJ1228或洛谷2148 [SDOI2009]E&D
BZOJ原题链接 洛谷原题链接 完全不会呀.. 写了这题才知道\(SG\)函数原来也能打表找规律... 题解请看大佬的博客 #include<cstdio> using namespace ...
- BZOJ1226或洛谷2157 [SDOI2009]学校食堂
BZOJ原题链接 洛谷原题链接 注意到\(B[i]\)很小,考虑状压\(DP\). 设\(f[i][j][k]\)表示前\(i - 1\)个人已经拿到菜,第\(i\)个人及其后面\(7\)个人是否拿到 ...
- [洛谷P1972][SDOI2009]HH的项链
题目大意:给你一串数字,多次询问区间内数字的种类数 题解:莫队 卡点:洛谷数据加强,开了个$O(2)$ C++ Code: #include <cstdio> #include <a ...
- 洛谷 P1972 [SDOI2009]HH的项链【莫队算法学习】
P1972 [SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- 洛谷 P1972 [SDOI2009]HH的项链 解题报告
P1972 [SDOI2009]HH的项链 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断 ...
随机推荐
- Beta阶段敏捷冲刺一
一.举行站立式会议 1.当天站立式会议照片一张 2.团队成员报告 林楚虹 (1) 昨天已完成的工作:查找连接数据库有关资料,请教在上一轮已经连接成功的同学 (2) 今天计划完成的工作:连接上数据库 ( ...
- Activiti reassign task to another user
//早先胡乱尝试的其他方法,可能对于以后深入学习Activiti有些用处. //taskService.delegateTask(taskId, receiveUserId); //taskServi ...
- SpringMvc 文件上传注意事项
前端 1.表单提交方法与格式 <form class="form-horizontal" action="/biz/patent/edit" method ...
- jQuery中click事件多次触发解决方案
jQuery 中元素的click事件中绑定其他元素的click事件. 因为jQuery中的click事件会累计绑定,导致事件注册越来越多. 解决方案: 1.能够避开,避免把click事件绑定到其他元素 ...
- php 历史版本下载地址
PHP 3.* 版本到 7.* 版本下载地址 http://www.php.net/releases/
- auto_increment 自增键的一些说明
导致auto_increment变小的几种情况: 1. alter table xx auto_increment = yy; 2. truncate table 3. restart mysql 第 ...
- Test Scenarios for a window
1 check if default window size is correct2 check if child window size is correct3 check if there is ...
- selenium之截图
selenium支持对当前页面保存截图,使用方法: driver.get_screenshot_as_file(file_path) 代码举例: ...... def get_screenshot(d ...
- C-Lodop回调函数的触发
高版本的火狐和谷歌不再支持np插件之后,Lodop公司推出了C-Lodop,解决了这些浏览器不能用Lodop插件方式打印的问题,相比较Lodop插件,C-Lodop由于是以服务的形式出现,返回值不能直 ...
- Django的ORM常用查询操作总结(Django编程-3)
Django的ORM常用查询操作总结(Django编程-3) 示例:一个Student model: class Student(models.Model): name=models.CharFiel ...