洛谷题目传送门

先安利蒟蒻仍在施工的博弈论总结

首先根据题目,石子被两两分组了,于是根据SG定理,我们只要求出每一组的SG值再全部异或起来就好啦。

把每一对数看成一个ICG,首先,我们尝试构造游戏的状态转移DAG。把一堆石子拿掉,另一堆任意拆成两堆,等于说由状态\((a,b)\)可以转移到\(\{(c,d),c+d=a\)或\(c+d=b\}\)

一眼看不出来这是要干神马。。。。。。然后开始打表。其实打表的方式可以更简单。首先,观察上式,对于每一个a,所有\(c+d=a\)的\((c,d)\)的\(SG\)值集合我们可以先用一个bitset存起来,这样当我们求\((a,b)\)的\(SG\)值时我们直接将\(a\)和\(b\)对应的两个集合并起来再求\(mex\)就好啦。于是得到了打表代码(bitset实在是太好用啦)

#include<cstdio>
#include<bitset>
#include<iostream>
using namespace std;
const int N=10,M=N+1;//随便调大小
typedef bitset<M> B;
B s[M];
int ans[M][M];
inline int mex(B b){//干什么就不解释了吧
int i=0;
while(b[i])++i;
return i;
}
int main(){
int i,j,k;
for(i=2;i<=N;++i)
for(j=1,k=i-1;k;++j,--k)
s[i].set(ans[j][k]=mex(s[j]|s[k]));//枚举合并
for(i=0;i<N;++i)printf("%3d",i);puts("");
for(i=1;i<N;++i){//输出矩阵
printf("%2d:",i);
for(j=1;i+j<=N;++j)
printf("%3d",ans[i][j]);
puts("");
}
for(i=1;i<=N;++i){//输出对于每一个a,所有c+d=a的(c,d)的SG值集合
printf("%2d:SG%d ",i,mex(s[i]));
cout<<s[i]<<endl;
}
return 0;
}

打出来的答案矩阵

 0:  1  2  3  4  5  6  7  8  9
1: 0 1 0 2 0 1 0 3 0
2: 1 1 2 2 1 1 3 3
3: 0 2 0 2 0 3 0
4: 2 2 2 2 3 3
5: 0 1 0 3 0
6: 1 1 3 3
7: 0 3 0
8: 3 3
9: 0

怎么看也没看出什么特别的地方

但接着看看对于每一个\(a\),所有\(c+d=a\)的\((c,d)\)的SG值集合

 1:SG0 00000000000
2:SG1 00000000001
3:SG0 00000000010
4:SG2 00000000011
5:SG0 00000000100
6:SG1 00000000101
7:SG0 00000000110
8:SG3 00000000111
9:SG0 00000001000
10:SG1 00000001001

诶,\(S_i\)等于\(i-1\)的二进制表示!!(我太弱了,不会证)

那对于询问的每一对数\((i,j)\),直接求\((i-1)\mid(j-1)\)(按位或)的二进制的最低的0所在的二进制位,把所有的异或起来就好啦

代码应该很好懂啊,直接位运算搞一搞就行啦

#include<cstdio>
#define R register int
const int SZ=1<<21;
char ibuf[SZ],*pi=ibuf-1;
inline int in(){
while(*++pi<'-');
R x=*pi&15;
while(*++pi>'-')x*=10,x+=*pi&15;
return x;
}
int main(){
fread(ibuf,1,SZ,stdin);
R T=in(),n,x,cnt,ans;
while(T--){
ans=0;
n=in()>>1;
while(n--){
cnt=0;
x=(in()-1)|(in()-1);
while(x&1)++cnt,x>>=1;
ans^=cnt;
}
puts(ans?"YES":"NO");
}
return 0;
}

洛谷P2148 [SDOI2009]E&D(博弈论)的更多相关文章

  1. 洛谷P1972 [SDOI2009]HH的项链 题解

    [SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不 ...

  2. BZOJ1880或洛谷2149 [SDOI2009]Elaxia的路线

    BZOJ原题链接 洛谷原题链接 显然最长公共路径是最短路上的一条链. 我们可以把最短路经过的边看成有向边,那么组成的图就是一张\(DAG\),这样题目要求的即是两张\(DAG\)重合部分中的最长链. ...

  3. BZOJ1227或洛谷2154 [SDOI2009]虔诚的墓主人

    BZOJ原题链接 洛谷原题链接 又是扫描线,题解可看大佬的博客(太懒了不想打) #include<cstdio> #include<algorithm> using names ...

  4. BZOJ1228或洛谷2148 [SDOI2009]E&D

    BZOJ原题链接 洛谷原题链接 完全不会呀.. 写了这题才知道\(SG\)函数原来也能打表找规律... 题解请看大佬的博客 #include<cstdio> using namespace ...

  5. BZOJ1226或洛谷2157 [SDOI2009]学校食堂

    BZOJ原题链接 洛谷原题链接 注意到\(B[i]\)很小,考虑状压\(DP\). 设\(f[i][j][k]\)表示前\(i - 1\)个人已经拿到菜,第\(i\)个人及其后面\(7\)个人是否拿到 ...

  6. [洛谷P1972][SDOI2009]HH的项链

    题目大意:给你一串数字,多次询问区间内数字的种类数 题解:莫队 卡点:洛谷数据加强,开了个$O(2)$ C++ Code: #include <cstdio> #include <a ...

  7. 洛谷 P1972 [SDOI2009]HH的项链【莫队算法学习】

    P1972 [SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含 ...

  8. 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告

    P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...

  9. 洛谷 P1972 [SDOI2009]HH的项链 解题报告

    P1972 [SDOI2009]HH的项链 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断 ...

随机推荐

  1. Linux内核分析第五周学习总结

    扒开系统调用的三层皮(下) 20135237朱国庆+ 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/UST ...

  2. beta版验收互评

    排名 团队名称 项目名称 优点 缺点,bug 报告 1 别看了你没救了队 校园帮帮帮(已发布) 实现普通用户的登陆,修改个人信息,发布信息,下订单的功能:管理员登陆,修改个人信息,发布信息,下订单,增 ...

  3. Nginx rewrite模块深入浅出详解

    rewrite模块(ngx_http_rewrite_module) nginx通过ngx_http_rewrite_module模块支持url重写.支持if条件判断,但不支持else.另外该模块需要 ...

  4. Qt__CMakeLists.txt

    cmake_minimum_required(VERSION 3.1.0) project (Project) if(CMAKE_COMPILER_IS_GNUCC) set(CMAKE_CXX_FL ...

  5. Jest & React & Enzyme

    Jest & React & Enzyme auto units testing https://reactjs.org/docs/test-utils.html https://gi ...

  6. Java之"instanceof"和"isInstance"代码举例

    源码: /** * @Date:2018-04-20 * @Description:判断Instance * - instanceof方法返回一个boolean类型的值,意在告诉我们对象是不是某个特定 ...

  7. BZOJ2653middle——二分答案+可持久化线段树

    题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个 长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在 ...

  8. AJAX--总结

    AJAX 2018-9-6 14:42:53 AJAX简介 ​ HTTP协议------>HTTP权威指南 ​ 请求:客户端去向服务端请求一个文件 ​ 响应:服务端把对应的文件内容返回给客户端, ...

  9. 快乐的Lambda表达式(一)

    转载:http://www.cnblogs.com/jesse2013/p/happylambda.html 原文出处: Florian Rappl   译文出处:Jesse Liu 自从Lambda ...

  10. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)(多重背包,单调队列)

    为了学习单调队列优化DP奔向了此题... 基础的多重背包就不展开了.设\(f_{i,j}\)为选前\(i\)个物品,重量不超过\(j\)的最大价值,\(w\)为重量,\(v\)为价值(蒟蒻有强迫症,特 ...