The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.

A binary search tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

Given any two nodes in a BST, you are supposed to find their LCA.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

Output Specification:

For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where Xis A and Y is the other node. If U or V is not found in the BST, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found..

Sample Input:

6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99

Sample Output:

LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <map>
#include <vector>
#include <set>
using namespace std;
const int maxn=;
int n,m,k;
int inorder[maxn],preorder[maxn];
struct node{
int data;
node* left;
node* right;
};
node* create(int prel,int prer,int inl,int inr){
if(prel>prer){
return NULL;
}
node* root=new node;
root->data=preorder[prel];
int k;
for(k=inl;k<=inr;k++){
if(inorder[k]==preorder[prel]){
break;
}
}
int numleft=k-inl;
root->left = create(prel+,prel+numleft,inl,k-);
root->right = create(prel+numleft+,prer,k+,inr);
return root;
}
bool findnode(int x){
for(int i=;i<m;i++){
if(preorder[i]==x) return true;
}
return false;
}
node* lca(node* root,int x1,int x2){
if(root==NULL)return NULL;
if(root->data==x1 || root->data==x2) return root;
node* left = lca(root->left,x1,x2);
node* right = lca(root->right,x1,x2);
if(left && right) return root;
else if(left==NULL) return right;
else return left;
}
int main(){
scanf("%d %d",&n,&m);
for(int i=;i<m;i++){
int c1;
scanf("%d",&c1);
preorder[i]=c1;
inorder[i]=c1;
}
sort(inorder,inorder+m);
node *root=create(,m-,,m-);
for(int i=;i<n;i++){
int x1,x2;
scanf("%d %d",&x1,&x2);
if(!findnode(x1) && !findnode(x2)){
printf("ERROR: %d and %d are not found.\n",x1,x2);
}
else if(!findnode(x1)) printf("ERROR: %d is not found.\n",x1);
else if(!findnode(x2)) printf("ERROR: %d is not found.\n",x2);
else{
node* res = lca(root,x1,x2);
if(res->data == x1) printf("%d is an ancestor of %d.\n",x1,x2);
else if(res->data == x2) printf("%d is an ancestor of %d.\n",x2,x1);
else printf("LCA of %d and %d is %d.\n",x1,x2,res->data);
}
}
}

注意点:这题和上一道1151基本一样,感觉是中间隔一次考试就会出现类似题目,不同的就是这个是给出二叉搜索树和他的先序遍历,而二叉搜索树的中序遍历其实就是对先序遍历排序,然后题目就一样了

PAT A1143 Lowest Common Ancestor (30 分)——二叉搜索树,lca的更多相关文章

  1. [PAT] 1143 Lowest Common Ancestor(30 分)

    1143 Lowest Common Ancestor(30 分)The lowest common ancestor (LCA) of two nodes U and V in a tree is ...

  2. PAT Advanced 1143 Lowest Common Ancestor (30) [二叉查找树 LCA]

    题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...

  3. PAT 1143 Lowest Common Ancestor[难][BST性质]

    1143 Lowest Common Ancestor(30 分) The lowest common ancestor (LCA) of two nodes U and V in a tree is ...

  4. A1143. Lowest Common Ancestor

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  5. 1143. Lowest Common Ancestor (30)

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  6. PAT 1143 Lowest Common Ancestor

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  7. 235. Lowest Common Ancestor of a Binary Search Tree(LCA最低公共祖先)

      Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the ...

  8. PAT天梯赛练习题 L3-010. 是否完全二叉搜索树(完全二叉树的判断)

    L3-010. 是否完全二叉搜索树 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 将一系列给定数字顺序插入一个初始为空的二叉搜 ...

  9. pat 团体天梯赛 L3-010. 是否完全二叉搜索树

    L3-010. 是否完全二叉搜索树 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 将一系列给定数字顺序插入一个初始为空的二叉搜 ...

随机推荐

  1. Docker 安装 mongoDB(五)

    Docker 安装 mongoDB 1.搜索docker镜像(可以看到搜索的结果,这个结果是按照一定的星级评价规则排序的) docker search mongo 2.拉取docker的mongo镜像 ...

  2. Java 支付宝支付,退款,单笔转账到支付宝账户(支付宝支付)

    最近一直在接触第三方,刚接入完支付宝的API做一下总结,个人能力薄弱有不对的地方望指教.  做的是一个小型电商项目,所以会接入第三方的支付和登入功能, 第一次接入第三方撸了很多官方文档. 进入主题, ...

  3. jQuery js 中return false,e.preventDefault(),e.stopPropagation()的区别(事件冒泡)

    有时候遇到冒泡事件很烦人,真的..... 1.e.stopPropagation()阻止事件冒泡 <head> <title></title> <script ...

  4. CentOS 通过yum来升级php到php5.6,yum upgrade php 没有更新包

    在文章中,我们将展示在centOS系统下如何将php升级到5.6,之前通过yum来安装lamp环境,直接升级的话,提示没有更新包,也就是说默认情况下php5.3.3是最新 1.查看已经安装的php版本 ...

  5. 【代码笔记】Web-ionic-toggle(切换开关)

    一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  6. Handle的原理(Looper、Handler、Message三者关系)

    转载请注明出处:http://blog.csdn.net/lowprofile_coding/article/details/72580044 介绍 前面的内容对Handler做了介绍,也讲解了如何使 ...

  7. (网页)angular js 终极购物车(转)

    转自CSDN: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  8. 配置文件读取工具类--PropertiesUtil

    /** * 属性工具类 * @author admin * 参考:https://www.cnblogs.com/doudouxiaoye/p/5693454.html */ public class ...

  9. 面向对象的封装与隐藏 this

    当我们创建一个对象的时候,我们可以通过‘对象.属性’的方式,对对象的属性进行赋值. 这里赋值操作要受到属性的数据类型和存储范围的制约,但是除此之外,没有其他制约条件. 但是实际问题中我们需要给这个属性 ...

  10. godaddy.com 都转到 www.dnspod.cn

    我们在godaddy上注册了域名,但因为godaddy对域名解析的诸多限制和缓慢. 所以必需把域名服务器更改为dnspod上,然后再在dnspod上做A记录,CNAME等设置都很方便.