DEEPCODER: LEARNING TO WRITE PROGRAMS

Basic Information

  • Authors: Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel Tarlow
  • Publication: ICLR'17
  • Description: Generate code based on input-output examples via neural network techniques

INDUCTIVE PROGRAM SYNTHESIS (IPS)

The Inductive Program Synthesis (IPS) problem is the following: given input-output examples, produce a program that has behavior consistent with the examples.

Building an IPS system requires solving two problems:

  • Search problem: to find consistent programs we need to search over a suitable set of possible programs. We need to define the set
    (i.e., the program space) and search procedure.
  • Ranking problem: if there are multiple programs consistent with the input-output examples, which one do we return?

Domain Specific Languages (DSLs)

  • DSLs are programming languages that are suitable for a
    specialized domain but are more restrictive than full-featured programming languages.
  • Restricted DSLs can also enable more efficient special-purpose search algorithms.
  • The choice of DSL also affects the difficulty of the ranking problem.

Search Techniques

Technique for searching for programs consistent with input-output examples.

  • Special-purpose algorithm
  • Satisfiability Modulo Theories (SMT) solving

Ranking

LEARNING INDUCTIVE PROGRAM SYNTHESIS (LIPS)

The components of LIPS are:

  1. a DSL specification,

    An attribute function A that maps programs P of the DSL to finite attribute vectors a = A(P). (Attribute vectors of different programs need not have equal length.) Attributes serve as the link between the machine learning and the search component of LIPS: the machine learning model predicts a distribution q(a | E), where E is the set of input-output examples, and the search procedure aims to search over programs P as ordered by q(A(P) | E). Thus an attribute is useful if it is both predictable from input-output examples, and if conditioning on its value significantly reduces the effective size of the search space.

    Possible attributes are the (perhaps position-dependent) presence or absence of high-level functions (e.g., does the program contain or end in a call to SORT). Other possible attributes include control
    flow templates (e.g., the number of loops and conditionals).

  2. a data-generation procedure,

    Generate a dataset ((P(n), a(n), E(n)))Nn=1 of programs P(n) in the chosen DSL, their attributes a(n), and accompanying input-output examples E(n)).

  3. a machine learning model that maps from input-output examples to program attributes,

    Learn a distribution of attributes given input-output examples, q(a | E).

  4. a search procedure that searches program space in an order guided by the model from (3).

    Interface with an existing solver, using the predicted q(a | E) to guide the search.

DEEPCODER: Instantiation of LIPS

  1. DSL AND ATTRIBUTES
    A program in our DSL is a sequence of function calls, where the result of each call initializes a fresh variable that is either a
    singleton integer or an integer array. Functions can be applied to any of the inputs or previously computed (intermediate) variables. The output of the program is the return value of the last function
    call, i.e., the last variable. See Fig. 1 for an example program of length T = 4 in our DSL.
    Overall, our DSL contains the first-order functions HEAD, LAST, TAKE, DROP, ACCESS, MINIMUM, MAXIMUM, REVERSE, SORT, SUM, and the higher-order functions MAP, FILTER, COUNT, ZIPWITH, SCANL1.

  1. DATA GENERATION
  2. MACHINE LEARNING MODEL
    1. an encoder: a differentiable mapping from a set of M input-output examples generated by
      a single program to a latent real-valued vector, and
    2. a decoder: a differentiable mapping from the latent vector representing a set of M inputoutput
      examples to predictions of the ground truth program’s attributes.

  1. SEARCH

    1. Depth-first search (DFS)
    2. “Sort and add” enumeration
    3. Sketch
  2. TRAINING LOSS FUNCTION
    Negative cross entropy loss

Implementation

  1. Pure python 3 implementation of DeepCoder
  2. Re-implement DeepCoder
  3. DeepCoder-tensorflow

[ICLR'17] DEEPCODER: LEARNING TO WRITE PROGRAMS的更多相关文章

  1. 17、Learning and Transferring IDs Representation in E-commerce笔记

    一.摘要 电子商务场景:主要组成部分(用户ID.商品ID.产品ID.商店ID.品牌ID.类别ID等) 传统的编码两个缺陷:如onehot,(1)存在稀疏性问题,维度高(2)不能反映关系,以两个不同的i ...

  2. SysML——AI-Sys Spring 2019

    AI-Sys Syllabus Projects Grading AI-Sys Spring 2019 When: Mondays and Wednesdays from 9:30 to 11:00 ...

  3. [综述]Deep Compression/Acceleration深度压缩/加速/量化

    Survey Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18] A ...

  4. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  5. Machine Learning 方向读博的一些重要期刊及会议 && 读博第一次组会时博导的交代

    读博从报道那天算起到现在已经3个多月了,这段时间以来和博导总共见过两次面,寥寥数语的见面要我对剩下的几年读书生活没有了太多的期盼,有些事情一直想去做却总是打不起来精神,最后挣扎一下还是决定把和博导开学 ...

  6. 【Deep Learning Nanodegree Foundation笔记】第 0 课:课程计划

    第一周 机器学习的类型,以及何时使用机器学习 我们将首先简单介绍线性回归和机器学习.这将让你熟悉这些领域的常用术语,你需要了解的技术进展,并了解深度学习在更大的机器学习背景中的位置. 直播:线性回归 ...

  7. Github项目推荐-图神经网络(GNN)相关资源大列表

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...

  8. 库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)

    项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 P ...

  9. CNN结构:场景分割与Relation Network

    参考第一个回答:如何评价DeepMind最新提出的RelationNetWork 参考链接:Relation Network笔记  ,暂时还没有应用到场景中 LiFeifei阿姨的课程:CV与ML课程 ...

随机推荐

  1. mysql连接查询(A表某字段 like B表字段)

    假设有A.B两表 A表中有个字段column_aa B表中有个字段column_bb 如果需要查询出B表中字段column_bb like A表中column_aa字段的纪录,可以使用如下语句 sel ...

  2. 小甲鱼Python第十三讲课后题--014字符串

     字符串的方法及注释 capitalize()     把字符串的第一个字符改为大写     casefold()     把整个字符串的所有字符改为小写     center(width)      ...

  3. python之名称空间

    1 类名称空间 创建一个类就会创建一个类的名称空间,用来存储类中定义的所有名字,这些名字称为类的属性 而类的良好总属性:数据属性和函数属性 其中类的数据属性是共享给所有对象 print(id(g1.c ...

  4. 【最大公约数&链表】权值 @upcexam5921

    时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定一个长为n的正整数序列Ai.对于它的任意一个连续的子序列{Al, Al+1, …, Ar},定义其权值W (l, r)为其长度与序列中所 ...

  5. pygame-KidsCanCode系列jumpy-part0-使用sprite

    油管(youtube)上有一个号称"史上最好的pygame教程"(传送门:https://www.youtube.com/watch?v=VO8rTszcW4s&list= ...

  6. 如何修改maven的默认jdk版本

    问题: 1.创建maven项目的时候,jdk版本是1.5版本,而自己安装的是1.7或者1.8版本. 2.每次右键项目名-maven->update project 时候,项目jdk版本变了,变回 ...

  7. svn文件夹解锁批处理

    清除svn文件的bat脚本整理 从svn上检出的项目,不在myeclipse工具中脱离svn的管辖,怎么办呢,下面有我的方法,也是借鉴别人的,用了特别好使,故推荐给大家. 首先创建一个xxx.bat文 ...

  8. JAVA中的ZoneId常用值备注

    一.获取代码 @Test public void zonesTest() { for (String availableZoneId : ZoneId.getAvailableZoneIds()) { ...

  9. 【PMP】组织结构类型

    1.简单型 描述:人员并肩工作,所有者/经营者直接做出主要决定并监督执行. PM角色:兼职(协调员) PM权限:极少(无) 项目管理人员:极少(无) 资源可用性:极少(无) 项目预算管理人:负责人 2 ...

  10. Visual Studio进行Web性能测试- Part II

    Visual Studio进行Web性能测试- Part II 2012-08-31 14:34 by 知平软件, 7557 阅读, 5 评论, 收藏, 编辑 原文作者:Ambily.raj 对于一个 ...