DEEPCODER: LEARNING TO WRITE PROGRAMS

Basic Information

  • Authors: Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel Tarlow
  • Publication: ICLR'17
  • Description: Generate code based on input-output examples via neural network techniques

INDUCTIVE PROGRAM SYNTHESIS (IPS)

The Inductive Program Synthesis (IPS) problem is the following: given input-output examples, produce a program that has behavior consistent with the examples.

Building an IPS system requires solving two problems:

  • Search problem: to find consistent programs we need to search over a suitable set of possible programs. We need to define the set
    (i.e., the program space) and search procedure.
  • Ranking problem: if there are multiple programs consistent with the input-output examples, which one do we return?

Domain Specific Languages (DSLs)

  • DSLs are programming languages that are suitable for a
    specialized domain but are more restrictive than full-featured programming languages.
  • Restricted DSLs can also enable more efficient special-purpose search algorithms.
  • The choice of DSL also affects the difficulty of the ranking problem.

Search Techniques

Technique for searching for programs consistent with input-output examples.

  • Special-purpose algorithm
  • Satisfiability Modulo Theories (SMT) solving

Ranking

LEARNING INDUCTIVE PROGRAM SYNTHESIS (LIPS)

The components of LIPS are:

  1. a DSL specification,

    An attribute function A that maps programs P of the DSL to finite attribute vectors a = A(P). (Attribute vectors of different programs need not have equal length.) Attributes serve as the link between the machine learning and the search component of LIPS: the machine learning model predicts a distribution q(a | E), where E is the set of input-output examples, and the search procedure aims to search over programs P as ordered by q(A(P) | E). Thus an attribute is useful if it is both predictable from input-output examples, and if conditioning on its value significantly reduces the effective size of the search space.

    Possible attributes are the (perhaps position-dependent) presence or absence of high-level functions (e.g., does the program contain or end in a call to SORT). Other possible attributes include control
    flow templates (e.g., the number of loops and conditionals).

  2. a data-generation procedure,

    Generate a dataset ((P(n), a(n), E(n)))Nn=1 of programs P(n) in the chosen DSL, their attributes a(n), and accompanying input-output examples E(n)).

  3. a machine learning model that maps from input-output examples to program attributes,

    Learn a distribution of attributes given input-output examples, q(a | E).

  4. a search procedure that searches program space in an order guided by the model from (3).

    Interface with an existing solver, using the predicted q(a | E) to guide the search.

DEEPCODER: Instantiation of LIPS

  1. DSL AND ATTRIBUTES
    A program in our DSL is a sequence of function calls, where the result of each call initializes a fresh variable that is either a
    singleton integer or an integer array. Functions can be applied to any of the inputs or previously computed (intermediate) variables. The output of the program is the return value of the last function
    call, i.e., the last variable. See Fig. 1 for an example program of length T = 4 in our DSL.
    Overall, our DSL contains the first-order functions HEAD, LAST, TAKE, DROP, ACCESS, MINIMUM, MAXIMUM, REVERSE, SORT, SUM, and the higher-order functions MAP, FILTER, COUNT, ZIPWITH, SCANL1.

  1. DATA GENERATION
  2. MACHINE LEARNING MODEL
    1. an encoder: a differentiable mapping from a set of M input-output examples generated by
      a single program to a latent real-valued vector, and
    2. a decoder: a differentiable mapping from the latent vector representing a set of M inputoutput
      examples to predictions of the ground truth program’s attributes.

  1. SEARCH

    1. Depth-first search (DFS)
    2. “Sort and add” enumeration
    3. Sketch
  2. TRAINING LOSS FUNCTION
    Negative cross entropy loss

Implementation

  1. Pure python 3 implementation of DeepCoder
  2. Re-implement DeepCoder
  3. DeepCoder-tensorflow

[ICLR'17] DEEPCODER: LEARNING TO WRITE PROGRAMS的更多相关文章

  1. 17、Learning and Transferring IDs Representation in E-commerce笔记

    一.摘要 电子商务场景:主要组成部分(用户ID.商品ID.产品ID.商店ID.品牌ID.类别ID等) 传统的编码两个缺陷:如onehot,(1)存在稀疏性问题,维度高(2)不能反映关系,以两个不同的i ...

  2. SysML——AI-Sys Spring 2019

    AI-Sys Syllabus Projects Grading AI-Sys Spring 2019 When: Mondays and Wednesdays from 9:30 to 11:00 ...

  3. [综述]Deep Compression/Acceleration深度压缩/加速/量化

    Survey Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18] A ...

  4. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  5. Machine Learning 方向读博的一些重要期刊及会议 && 读博第一次组会时博导的交代

    读博从报道那天算起到现在已经3个多月了,这段时间以来和博导总共见过两次面,寥寥数语的见面要我对剩下的几年读书生活没有了太多的期盼,有些事情一直想去做却总是打不起来精神,最后挣扎一下还是决定把和博导开学 ...

  6. 【Deep Learning Nanodegree Foundation笔记】第 0 课:课程计划

    第一周 机器学习的类型,以及何时使用机器学习 我们将首先简单介绍线性回归和机器学习.这将让你熟悉这些领域的常用术语,你需要了解的技术进展,并了解深度学习在更大的机器学习背景中的位置. 直播:线性回归 ...

  7. Github项目推荐-图神经网络(GNN)相关资源大列表

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...

  8. 库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)

    项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 P ...

  9. CNN结构:场景分割与Relation Network

    参考第一个回答:如何评价DeepMind最新提出的RelationNetWork 参考链接:Relation Network笔记  ,暂时还没有应用到场景中 LiFeifei阿姨的课程:CV与ML课程 ...

随机推荐

  1. 记录下pytorch代码从0.3版本迁移到0.4版本要做的一些更改。

    1. UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to in ...

  2. C/JS_实现选择排序

    1.js var arr = prompt("请输入一个数组(以“,”隔开):").split(",").map(function(data){ return ...

  3. MySQL中exists和in的区别及使用场景

    exists和in的使用方式: 1 #对B查询涉及id,使用索引,故B表效率高,可用大表 -->外小内大 1 select * from A where exists (select * fro ...

  4. 解析 ViewTreeObserver 源码(下)

    继上篇内容,本文介绍 ViewTreeObserver 的使用,以及体会其所涉及的观察者模式,期间会附带回顾一些基础知识.最后,我们简单聊一下 Android 的消息传递,附高清示意图,轻松捋清整个传 ...

  5. Android 模拟器启动不了-问题解决方案

    一.Android 模拟器启动不了问题解决方案 在安装Android开发环境时,首先安装java虚拟机,然后下载android adk 管理android虚拟机. 在完成工作后,添加android的虚 ...

  6. Go 语言学习笔记

    1. go没有static关键字 面向对象编程中,尽量对函数进行封装,对于没有函数变量的对象,使用static关键字尤其方便. go中没有static关键字,必须每次new一个出来. type Han ...

  7. MSSQL 调用C#程序集 实现C#字符串到字符的转化

    10多年前用过MSSQL 调用C#程序集来实现数据的加密和解密,也搞过通过字符偏移实现简单的加密和解密.这次就总结一下吧: C#如下: public class CLRFunctions { /// ...

  8. Mongodb: Sort operation used more than the maximum 33554432 bytes of RAM

    上线许久的产品突然爆出了一个Mongodb 查询的BUG,错误如下: "exception":"org.springframework.data.mongodb.Unca ...

  9. Js实现Table动态添加一行的小例子

    <form id="form1" runat="server"> <div> <table id=" style=&qu ...

  10. org.springframework.web.method.HandlerMethod 与 org.springframework.messaging.handler.HandlerMethod 转换失败

    Springmvc hander.getclassclass org.springframework.web.method.HandlerMethod HandlerMethod.classclass ...