数据挖掘算法——Close算法
说明奥:菜鸟的自我学习,可能有错。
Close算法原理:
一个频繁闭合项目集的所有闭合子集一定是频繁的,一个非频繁闭合项目集的所有闭合超集一定是非频繁的。
close算法是对Apriori算法的改进
具体步骤为:
1.先找到候选1项目集FCC1 并得到其支持度和闭合
2.之后对每个候选闭合进行修剪 如果其支持度不小于最小支持度则加入到FC1
3.自身不断循环下去 直到某个r-项目集FCCi为空 则算法结束。
栗子:

(1)计算FCC各个产生式的闭合和支持度
首先得到FCG的产生式: FCC的产生式为(A)、(B)、(C)、(D).(E)
然后计算闭合集。\例如,计算{A}的闭合。数据库中第项(ABE)包含{A},这时(A)的闭合首先得到{ABE};
第四项(ABD}包含{A},所以取{ABD)和{ABE)的交集{AB)作为(A)的闭合:
第五项{AC}包含{A},则取{AB}和{AC)的交集得到{A},作为{A)的团合;
第七项是{AC},交集为{A};第八项{ABCE)与{A}的交集是{A};
第九项{ABC}与{A)的交集是{A)。这时到了最后一项,计算完成, 得到{A}的闭合是(A)。并同时计算出{A)的支持度为6(可通过对出现的A的超集进行计数得到)。同样可以得到FCO所有的闭合与支持度

将支持度小于最小支持度的候选闭合项删除,得到FC1 这个例子FC1和FCC1是相同的为(A)(B)(C)(D)(E)
没表现出来的为空集
将支持度小于最小支持度的候选闭合项删除.得到FC2,这时(AD)和(CE)的支持度为1,被删除。FC2 = (AB,AC. BC, BD)。
(6)利用FC2的generator生成FCC3并进行裁剪
FC2连接后得到: {ABC,BCD).其中的(BCD)有非频繁子集CD).所以将这项删除。剩下为{ABC),得到的候选项FCC3 ={ABC)。嗯???这边有问题 这边没有ABD 据涛哥说。。。要第一个相同才能连接。。。。所以ABAC相同连接成ABC BC和BD相连接成BCD
(7) FCC3;不为空,计算各产生式的闭合和支持度ABC的闭合为{ABC),支持度为2。
将支持度小于最小支持度的候选闭合项删除,得到FC3.对于本例.FCC3 只有一项支持度为2,保留。
(9)利用FC3生成FCC4为空,算法结束。 将所有不重复的闭合加入到FC中得到FC={A,B,ABE,BD,C,AB,AC,BC,ABC}
(11)将L3的频繁项分解
先分解(ABE)的所产集为AB,AE和BE后两项不存在,将它们加人到L中,ABC有2-项于集为(AB)、(AC)和(BC),这三项均在L中 得到L2 = {AB AC BC AE BE BD}
(12)将L2的频繁项分解
方法同上,得L1为(A.B.C,D.E)
使用频繁闭团合项目集,发现可以提高关联规则的效率。
不理解的地方有3 待更新 等上课问老师
相连的规则必须要头相同才可以也就是说 两个相连成3个 必须要AB AC A是相同的 ABC ABD相连成四个 必须要AB是相同的才可以~~~~~ 涛哥如是说
数据挖掘算法——Close算法的更多相关文章
- 数据挖掘10大算法(1)——PageRank
1. 前言 这系列的文章主要讲述2006年评出的数据挖掘10大算法(见图1).文章的重点将偏向于算法的来源以及算法的主要思想,不涉及具体的实现.如果发现文中有错,希望各位指出来,一起讨论. 图1 来自 ...
- CIKM Competition数据挖掘竞赛夺冠算法陈运文
CIKM Competition数据挖掘竞赛夺冠算法陈运文 背景 CIKM Cup(或者称为CIKM Competition)是ACM CIKM举办的国际数据挖掘竞赛的名称.CIKM全称是Intern ...
- 数据挖掘-K-近邻算法
数据挖掘-K-近邻算法 目录 数据挖掘-K-近邻算法 1. K-近邻算法概述 1.1 K-近邻算法介绍 1.1.1 KNN算法作用 1.1.2 KNN 算法思想 1.1.3 KNN算法特点 1.2 K ...
- 数据挖掘之clara算法原理及实例(代码中有bug)
继上两篇文章介绍聚类中基于划分思想的k-means算法和k-mediod算法 本文将继续介绍另外一种基于划分思想的k-mediod算法-----clara算法 clara算法可以说是对k-mediod ...
- 数据挖掘十大算法--K-均值聚类算法
一.相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能 ...
- 数据聚类算法-K-means算法
深入浅出K-Means算法 摘要: 在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. K-Mea ...
- GMM算法k-means算法的比较
1.EM算法 GMM算法是EM算法族的一个具体例子. EM算法解决的问题是:要对数据进行聚类,假定数据服从杂合的几个概率分布,分布的具体参数未知,涉及到的随机变量有两组,其中一组可观测另一组不可观测. ...
- 简单易学的机器学习算法——EM算法
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...
- 最短路径算法-Dijkstra算法的应用之单词转换(词梯问题)(转)
一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine- ...
- 重新想象 Windows 8 Store Apps (31) - 加密解密: 哈希算法, 对称算法
原文:重新想象 Windows 8 Store Apps (31) - 加密解密: 哈希算法, 对称算法 [源码下载] 重新想象 Windows 8 Store Apps (31) - 加密解密: 哈 ...
随机推荐
- Cesium简单使用
CesiumJS是一个基于javascript的浏览器器3d地图引擎 下载 https://cesiumjs.org/downloads/ 下载的Cesium-1.56.1,解压后的结构为 1.设置W ...
- java基础---->java8中的函数式接口
这里面简单的讲一下java8中的函数式接口,Function.Consumer.Predicate和Supplier. 函数式接口例子 一.Function:接受参数,有返回参数 package co ...
- windows安装mysql8
1:首先去官网下载安装包 下载地址:https://dev.mysql.com/downloads/mysql/ 2:将解压文件解压到你安装的目录:E:\mysql-8.0.11-winx64 (我 ...
- CentOS 7.0关闭服务器的防火墙服务命令
1.直接关闭防火墙systemctl stop firewalld.service #停止firewallsystemctl disable firewalld.service #禁止firewall ...
- 11.2vue(3)
2018-11-2 19:00:33 明天周末,又可以愉快整理博客啦! 越努力,越幸运!永远不要高估自己!!! 接着学vue 感觉好强大! 用这个组件的好处就是,不需要手动刷新,文件只要把保存就自动刷 ...
- bypass safedog upload
这里附上两个payload: Content-Disposition: form-data; name=”up_picture”; filename=”[回车]1.php” Content-Dispo ...
- python os module
os 模块提供了非常丰富的方法用来处理文件和目录.常用的方法如下表所示: 序号 ...
- c++试题2
一.写出下列程序的运行结果(40 分) 1.for(i=1;i<5;i++); cout << “OK” << endl; 程序执行后的输出结果是: OK ___ ...
- Access无法启动应用程序,工作组信息文件丢失,或是已被其他用户已独占方式打开
使用SQL Server导入有密码的Access数据库内容,连接时出现错误提示: Access无法启动应用程序,工作组信息文件丢失,或是已被其他用户已独占方式打开 参考百度信息,可以点上图中的高级,在 ...
- H/s:哈希率单位转换
哈系率说明 挖矿能力是通过寻找矿工可以执行的地块的尝试次数来衡量的.每次尝试都包括创建一个唯一的块候选项,并通过SHA-256d(一种加密哈希函数)创建块候选项的摘要.或者,简而言之,哈希.由于这是一 ...