\(Lucas\)定理:

\(C^x_y≡C^{x/p}_{y/p}*C^{x\%p}_{y\%p} ~~(mod~p)\)

证明不会2333

void pre(){
A[0]=A[1]=B[0]=B[1]=1;
for(int i=2;i<MOD;i++){B[i]=-B[MOD%i]*(MOD/i)%MOD;}
for(int i=2;i<MOD;i++)
A[i]=A[i-1]*i%MOD,
B[i]=B[i-1]*B[i]%MOD;
}
LL C(int n,int m){
if(m>n)return 0;m=min(m,n-m);
return 1ll*A[n]*B[n-m]%MOD*B[m]%MOD;
}
LL Lucas(int n,int m){
if(m==0)return 1;
return Lucas(n/p,m/p)*C(n%p,m%p);
}

【总结】 Lucas定理的更多相关文章

  1. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  2. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  3. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  4. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  5. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  6. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  8. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  9. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  10. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

随机推荐

  1. Luogu2839 Middle 主席树、二分答案

    题目传送门:https://www.luogu.org/problemnew/show/P2839 题目大意:给出一个长度为$N$的序列与$Q$次询问,每次询问左端点在$[a,b]$,右端点在$[c, ...

  2. 浅谈CDQ分治与偏序问题

    初识CDQ分治 CDQ分治是一个好东西,一直听着dalao们说所以就去学了下. CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. ...

  3. 生成线上用https证书,支持通配符和多域名,初学Let’s Encrypt用于IIS,纯本地手动

    自简书发布的上篇<生成本地测试用https证书,支持通配符和多域名,初学OpenSSL>以来,本地测试用https用的妥妥的. 线上一直用的腾讯云的免费证书(每个域名都要一个证书(滑稽), ...

  4. myeclipse、maven、tomcat、jdk技巧和坑【待完善】

    公司使用前后不分离或半分离的springmvc + maven ,自己不得不研究研究myeclipse.maven.tomcat等等 开发环境搭建:坑一: Unable to process Jar ...

  5. Git push 时如何避免出现 "Merge branch 'master' of ..."

    在使用 Git 的进行代码版本控制的时候,往往会发现在 log 中出现 "Merge branch 'master' of ..." 这句话,如下图所示.日志中记录的一般为开发过程 ...

  6. Redis未授权访问漏洞的利用及防护

    Redis未授权访问漏洞的利用及防护 什么是Redis未授权访问漏洞? Redis在默认情况下,会绑定在0.0.0.0:6379.如果没有采取相关的安全策略,比如添加防火墙规则.避免其他非信任来源IP ...

  7. Python初始编码-3

    01010100 新11010000 开11010100 一01100000 家11000000 看11000000 看 01010100011101110101011110110A B C01000 ...

  8. Individual Project 1 总结

    题目: http://www.cnblogs.com/jiel/p/3978727.html 1. 估计时间: ① 遍历目录找到所有文本文件 3天 ② 编写统计词频的函数 排序的函数 并输出到文件 2 ...

  9. 【Beta阶段】第八次Scrum Meeting!

    每日任务内容: 本次会议为第八次Scrum Meeting会议~ 由于本次会议项目经理身体不适,未参与会议,会议精神由卤蛋代为转达,其他同学一起参与了会议 队员 昨日完成任务 明日要完成任务 刘乾 今 ...

  10. pl/sql破解方法

    转载源:http://blog.csdn.net/oscar999/article/details/2123803 打开注册表在run下输入regedit删除1.HKEY_CURRENT_USER/S ...