【总结】 Lucas定理
\(Lucas\)定理:
\(C^x_y≡C^{x/p}_{y/p}*C^{x\%p}_{y\%p} ~~(mod~p)\)
证明不会2333
void pre(){
A[0]=A[1]=B[0]=B[1]=1;
for(int i=2;i<MOD;i++){B[i]=-B[MOD%i]*(MOD/i)%MOD;}
for(int i=2;i<MOD;i++)
A[i]=A[i-1]*i%MOD,
B[i]=B[i-1]*B[i]%MOD;
}
LL C(int n,int m){
if(m>n)return 0;m=min(m,n-m);
return 1ll*A[n]*B[n-m]%MOD*B[m]%MOD;
}
LL Lucas(int n,int m){
if(m==0)return 1;
return Lucas(n/p,m/p)*C(n%p,m%p);
}
【总结】 Lucas定理的更多相关文章
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- 大组合数:Lucas定理
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- hdu 3037 Saving Beans Lucas定理
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix
Tom and matrix Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...
- HDU 4349 Xiao Ming's Hope lucas定理
Xiao Ming's Hope Time Limit:1000MS Memory Limit:32768KB Description Xiao Ming likes counting nu ...
- HDU3037 Saving Beans(Lucas定理+乘法逆元)
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...
随机推荐
- Luogu2839 Middle 主席树、二分答案
题目传送门:https://www.luogu.org/problemnew/show/P2839 题目大意:给出一个长度为$N$的序列与$Q$次询问,每次询问左端点在$[a,b]$,右端点在$[c, ...
- 浅谈CDQ分治与偏序问题
初识CDQ分治 CDQ分治是一个好东西,一直听着dalao们说所以就去学了下. CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. ...
- 生成线上用https证书,支持通配符和多域名,初学Let’s Encrypt用于IIS,纯本地手动
自简书发布的上篇<生成本地测试用https证书,支持通配符和多域名,初学OpenSSL>以来,本地测试用https用的妥妥的. 线上一直用的腾讯云的免费证书(每个域名都要一个证书(滑稽), ...
- myeclipse、maven、tomcat、jdk技巧和坑【待完善】
公司使用前后不分离或半分离的springmvc + maven ,自己不得不研究研究myeclipse.maven.tomcat等等 开发环境搭建:坑一: Unable to process Jar ...
- Git push 时如何避免出现 "Merge branch 'master' of ..."
在使用 Git 的进行代码版本控制的时候,往往会发现在 log 中出现 "Merge branch 'master' of ..." 这句话,如下图所示.日志中记录的一般为开发过程 ...
- Redis未授权访问漏洞的利用及防护
Redis未授权访问漏洞的利用及防护 什么是Redis未授权访问漏洞? Redis在默认情况下,会绑定在0.0.0.0:6379.如果没有采取相关的安全策略,比如添加防火墙规则.避免其他非信任来源IP ...
- Python初始编码-3
01010100 新11010000 开11010100 一01100000 家11000000 看11000000 看 01010100011101110101011110110A B C01000 ...
- Individual Project 1 总结
题目: http://www.cnblogs.com/jiel/p/3978727.html 1. 估计时间: ① 遍历目录找到所有文本文件 3天 ② 编写统计词频的函数 排序的函数 并输出到文件 2 ...
- 【Beta阶段】第八次Scrum Meeting!
每日任务内容: 本次会议为第八次Scrum Meeting会议~ 由于本次会议项目经理身体不适,未参与会议,会议精神由卤蛋代为转达,其他同学一起参与了会议 队员 昨日完成任务 明日要完成任务 刘乾 今 ...
- pl/sql破解方法
转载源:http://blog.csdn.net/oscar999/article/details/2123803 打开注册表在run下输入regedit删除1.HKEY_CURRENT_USER/S ...