\(Lucas\)定理:

\(C^x_y≡C^{x/p}_{y/p}*C^{x\%p}_{y\%p} ~~(mod~p)\)

证明不会2333

void pre(){
A[0]=A[1]=B[0]=B[1]=1;
for(int i=2;i<MOD;i++){B[i]=-B[MOD%i]*(MOD/i)%MOD;}
for(int i=2;i<MOD;i++)
A[i]=A[i-1]*i%MOD,
B[i]=B[i-1]*B[i]%MOD;
}
LL C(int n,int m){
if(m>n)return 0;m=min(m,n-m);
return 1ll*A[n]*B[n-m]%MOD*B[m]%MOD;
}
LL Lucas(int n,int m){
if(m==0)return 1;
return Lucas(n/p,m/p)*C(n%p,m%p);
}

【总结】 Lucas定理的更多相关文章

  1. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  2. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  3. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  4. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  5. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  6. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  8. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  9. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  10. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

随机推荐

  1. CF293B Distinct Paths 搜索

    传送门 首先数据范围很假 当\(N + M - 1 > K\)的时候就无解 所以对于所有要计算的情况,\(N + M \leq 11\) 超级小是吧,考虑搜索 对于每一个格子试填一个数 对于任意 ...

  2. 微软下一代Web前端技术Blazor(C#编译为WebAssembly)

    W3C Web标准化机构在制定下一代的网页技术WebAssembly.目前版本是1.0,主流浏览器的最新版本都已经支持.其特点是浏览器可以执行编译后的二进制程序,不需要像之前的程序,浏览器下载Java ...

  3. [SHOI2008]cactus仙人掌图[圆方树+树dp]

    题意 求仙人掌的直径(相距最远的两个点的距离). \(n\le 5\times 10^4​\) 分析 建立圆方树,讨论答案路径的 lca 在圆点还是方点. 利用树形 dp 求出每个圆点到 不同子树内圆 ...

  4. MySQL数据库对象-索引

    1. 概述2. 索引分类2.1 不同索引的概念2.1.1 普通索引2.1.2 唯一索引2.1.3 全文索引2.1.4 多列索引3. 索引操作3.1 普通索引3.1.1 创建表时创建普通索引3.1.2 ...

  5. Bash 笔记

    获取当前工作目录 basepath=$(cd `dirname $0`; pwd) 源文 : https://sexywp.com/bash-how-to-get-the-basepath-of-cu ...

  6. M2阶段团队贡献分

    根据任务完成情况与之前的评分标准,我们给组员分数如下: 团队成员 最终得分 程刚 51 李睿琦 53 刘丽萍 50 刘宇帆 48 王力民 47 马佐霖 49 左少辉 52

  7. 【个人博客作业II】代码复审结果

    [代码复审结果] General Does the code work? Does it perform its intended function, the logic is correct etc ...

  8. 软件工程实践作业2 --梭哈游戏(java) 实践报告

    一,题目简介: 1.创建一副扑克牌 7------k 加入到集合对象中2.对扑克牌洗牌3.定义参与游戏的玩家的人,通过键盘输入,限定人数2-54.人数符合要求继续执行,不符合退出5.对玩家发牌,每个人 ...

  9. java学习--第50天讲到jquery

    4月4日jquery讲完了. jquery组合选择器 逗号隔开 层级选择器 父元素    子元素,直接子元素和间接子元素,空格隔开. 直接后代选择器: 父元素>子元素    选择的直接子元素 下 ...

  10. centos7编译安装zabbix(附带编译安装lnmp)

    先把防火墙和selinux关闭: sytemctl stop firewalld setenforce 0 1.yum安装依赖: yum -y install wget openssl* gcc gc ...