【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

题面

BZOJ

洛谷

题解

感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!!

看着这个东西就感觉可以递归处理。

令\(f(n,k)\)表示答案。

\[\begin{aligned}
f(n,k)&=\sum_{i=0}^k {n\choose i}\\
&=\sum_{i=0}^k {n/p\choose i/p}*{n\%p\choose i\%p}\\
&=\sum_{x=0}^{p-1}{n\%p\choose x}*\sum_{i=0}^k[i\%p=x]{n/p\choose i/p}\\
&=\sum_{x=0}^{p-1}{n\%p\choose x}*\sum_{i=0}^{(k-x)/p}{n/p\choose i}\\
&=\sum_{x=0}^{p-1}{n\%p\choose x}*f(n/p,(k-x)/p)
\end{aligned}\]

前面那个东西可以提前预处理好前缀和,而后面那个东西最多递归两次。而递归层数也就最多\(6\)层。所以单次复杂度\(O(2^6)\)。卡卡常就洛谷rk1了。。。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MOD 2333
#define MAX 2350
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int C[MAX][MAX];
int f(ll n,ll k)
{
if(n<MOD)return C[n][min(n,k)];
if(!k)return 1;
int ret=0,x=k%MOD,y=n%MOD;
ret=C[y][min(y,x)]*f(n/MOD,k/MOD);
if(k-x)ret=(ret+(C[y][y]-C[y][min(y,x)]+MOD)*f(n/MOD,(k-x-1)/MOD))%MOD;
return ret;
}
ll n,k;
int main()
{
for(int i=0;i<MAX;++i)C[i][0]=1;
for(int i=1;i<MAX;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
for(int i=0;i<MAX;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i][j]+C[i][j-1])%MOD;
int T=read();
while(T--)
{
n=read();k=read();
printf("%d\n",f(n,k));
}
return 0;
}

【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)的更多相关文章

  1. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  3. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  4. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  5. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  6. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  7. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

  8. BZOJ4591——[Shoi2015]超能粒子炮·改

    1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...

  9. bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改

    http://www.lydsy.com/JudgeOnline/problem.php?id=4591 最后的式子合并同类项 #include<cstdio> #include<i ...

  10. bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...

随机推荐

  1. Flask核心机制--上下文源码剖析

    一.前言 了解过flask的python开发者想必都知道flask中核心机制莫过于上下文管理,当然学习flask如果不了解其中的处理流程,可能在很多问题上不能得到解决,当然我在写本篇文章之前也看到了很 ...

  2. webpack 构建 node_modules 中公司内部组件

    构建 node_modules 中特定的组件 { test:/\.js$/, exclude: /node_modules\/(?!(zt-)\/).*/, use:[ { loader:" ...

  3. 随机森林和GBDT的几个核心问题

    随机森林random forest的pro和con是什么?优势是accuracy高,但缺点是速度会降低,并且解释性interpretability会差很多,也会有overfitting的现象. 为什么 ...

  4. Spring+SpringMVC+MyBatis整合(easyUI、AdminLte3)

    实战篇(付费教程) 花了几天的时间,做了一个网站小 Demo,最终效果也与此网站类似.以下是这次实战项目的 Demo 演示. 登录页: 富文本编辑页: 图片上传: 退出登录: SSM 搭建精美实用的管 ...

  5. Linux 磁盘与磁盘分区

    Linux 系统中所有的硬件设备都是通过文件的方式来表现和使用的,我们将这些文件称为设备文件,硬盘对应的设备文件一般被称为块设备文件.本文介绍磁盘设备在 Linux 系统中的表示方法以及如何创建磁盘分 ...

  6. Webpack 2 视频教程 002 - NodeJS 安装与配置

    原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...

  7. python常用程序算法

    一.冒泡排序: 1.冒泡排序是将无序的数字排列成从小到大的有序组合: 过程:对相邻的两个元素进行比较,对不符合要求的数据进行交换,最后达到数据有序的过程. 规律: 1.冒泡排序的趟数时固定的:n-1 ...

  8. PHP中报500错误时如何查看错误信息

    在执行代码中加入下面两行代码即可 ini_set("display_errors","On"); error_reporting(E_ALL);

  9. B. Vasya and Isolated Vertices

    链接 [http://codeforces.com/contest/1065/problem/B] 题意 给你n个点,m条边,让你找最多孤立点和最少孤立点,不能有自环路 分析 对于最少max(0,n- ...

  10. alpa开发阶段团队贡献分

    这是我们团队之前决定的分配方式: 1.凡是认真完成自己任务的队员,都将有基础分30分(态度分). 2. 将整个项目细化为不同的任务,列出一个任务清单,在综合.协调完每名成员的意愿后,我会分配清单中的任 ...