Sometimes Naive

Problem Description
 
Rhason Cheung had a naive problem, and asked Teacher Mai for help. But Teacher Mai thought this problem was too simple, sometimes naive. So she ask you for help.

She has a tree with n vertices, numbered from 1 to n. The weight of i-th node is wi.

You need to support two kinds of operations: modification and query.

For a modification operation u,w, you need to change the weight of u-th node into w.

For a query operation u,v, you should output ∑ni=1∑nj=1f(i,j). If there is a vertex on the path from u to v and the path from i to j in the tree, f(i,j)=wiwj, otherwise f(i,j)=0. The number can be large, so print the number modulo 109+7

 
Input
There are multiple test cases.

For each test case, the first line contains two numbers n,m(1≤n,m≤105).

There are n numbers in the next line, the i-th means wi(0≤wi≤109).

Next n−1 lines contain two numbers each, ui and vi, that means that there is an edge between ui and vi.

The following are m lines. Each line indicates an operation, and the format is "1 u w"(modification) or "2 u v"(query)(0≤w≤109)

 
Output
For each test case, print the answer for each query operation.
 
Sample Input
6 5
1 2 3 4 5 6
1 2
1 3
2 4
2 5
4 6
2 3 5
1 5 6
2 2 3
1 1 7
2 2 4
 
Sample Output
341
348
612
 

题意:

    给你一棵n个节点的树,有点权。

  要求支持两种操作:

    操作1:更改某个节点的权值。

    操作2:给定u,v, 求 Σw[i][j]   i , j 为任意两点且i到j的路径与u到v的路径相交。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 1e6+, M = 1e3+, mod = 1e9+, inf = 2e9; LL aa[N],bb[N],in[N],out[N];
int dep[N],head[N],t=,sz[N],fa[N],indexS,top[N],pos[N],son[N];
struct ss{int to,next;}e[N*];
int n;
void add(int u,int v)
{e[t].to = v;e[t].next = head[u];head[u] = t++;} void dfs(int u) {
int k = ;
sz[u] = ;
if(u!=)dep[u] = dep[fa[u]] + ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == fa[u]) continue;
fa[to] = u;
dfs(to);
sz[u] += sz[to];
if(sz[to] > sz[k]) k = to;
}
if(k) son[u] = k;
}
void dfs(int u,int chain) {
int k = ;
pos[u] = ++indexS;
in[u] = indexS;
top[u] = chain;
if(son[u] > )
dfs(son[u],chain);
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(dep[to] > dep[u] && son[u] != to)
dfs(to,to);
}
out[u] = indexS;
} void update(int x,LL val,LL *sum) {
for(int i = x; i < N; i += i&(-i)) {
sum[i] += val;
sum[i] %= mod;
}
}
LL ask(int x,LL *sum) {
LL res = ;
for(int i = x; i; i-=i&(-i)) res += sum[i],res %= mod;
return res;
} LL allsum,C_tree[N],C_sqtree[N],a[N];
void update(int x,LL val) {
int u = top[x];
while(fa[u] > ) {
LL all = ask(out[u],C_tree) - ask(in[u]-,C_tree);
LL newall = (val - a[x])*(val - a[x])%mod + 1LL**all*(val-a[x])%mod;
update(in[fa[u]],newall%mod,C_sqtree);
u = top[fa[u]];
}
update(in[x],val-a[x],C_tree);
a[x] = val;
}
LL query(int x,int y) {
LL res = ,hav = ;
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x,y);
res += ask(in[x],C_sqtree) - ask(in[top[x]]-,C_sqtree);
res %= mod;
if(son[x]>) {
LL all = ask(out[son[x]],C_tree) - ask(in[son[x]]-,C_tree);
res += all*all;
res %= mod;
}
if(hav>) {
LL all = ask(out[hav],C_tree) - ask(in[hav]-,C_tree);
res -= all * all;
res %= mod;
}
hav = top[x];
x = fa[hav];
}
if(dep[x] < dep[y]) swap(x,y);
res += ask(in[x],C_sqtree) - ask(in[y]-,C_sqtree);
res %= mod;
if(fa[y] > ) {
LL all = ((ask(out[],C_tree) - ask(out[y],C_tree) + ask(in[y]-,C_tree))%mod+mod)%mod;
res += (all*all)%mod;
res %= mod;
}
if(son[x]>) {
LL all = ask(out[son[x]],C_tree) - ask(in[son[x]]-,C_tree);
res += all*all;
res %= mod;
}
if(hav>) {
LL all = ask(out[hav],C_tree) - ask(in[hav]-,C_tree);
res -= all * all;
res %= mod;
}
return res;
}
int Q;
void init() {
memset(head,,sizeof(head));
t = ;
indexS = ;
allsum = ;
memset(son,-,sizeof(son));
son[] = ;
memset(C_tree,,sizeof(C_tree));
memset(C_sqtree,,sizeof(C_sqtree));
}
int main() {
while(scanf("%d%d",&n,&Q)!=EOF) {
init();
for(int i = ; i <= n; ++i)
scanf("%I64d",&a[i]);
allsum = allsum*allsum%mod;
for(int i = ; i < n; ++i) {
int x,y;
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
fa[] = -;
dfs();
dfs(,);
for(int i = ; i <= n; ++i) {
LL uu = a[i];
a[i] = ;
update(i,uu);
}
while(Q--) {
int op,x;
LL y;
LL all = ask(out[],C_tree);
scanf("%d%d%I64d",&op,&x,&y);
if(op == ) {
update(x,y);
}
else
printf("%I64d\n",((all*all%mod - query(x,y)) % mod + mod)%mod);
}
}
return ;
}

HDU 5405 Sometimes Naive 树链剖分+bit*****的更多相关文章

  1. 2015多校第9场 HDU 5405 Sometimes Naive 树链剖分

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5405 题意: 给你一棵n个节点的树,有点权.        要求支持两种操作: 操作1:更改某个节点的 ...

  2. HDU 5029 Relief grain --树链剖分第一题

    题意:给一棵树,每次给两个节点间的所有节点发放第k种东西,问最后每个节点拿到的最多的东西是哪种. 解法:解决树的路径上的修改查询问题一般用到的是树链剖分+线段树,以前不会写,后来学了一下树链剖分,感觉 ...

  3. hdu 5029 Relief grain(树链剖分+线段树)

    题目链接:hdu 5029 Relief grain 题目大意:给定一棵树,然后每次操作在uv路径上为每一个节点加入一个数w,最后输出每一个节点个数最多的那个数. 解题思路:由于是在树的路径上做操作, ...

  4. HDU 5029 Relief grain 树链剖分打标记 线段树区间最大值

    Relief grain Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  5. HDU 4366 Successor(树链剖分+zkw线段树+扫描线)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4366 [题目大意] 有一个公司,每个员工都有一个上司,所有的人呈树状关系,现在给出每个人的忠诚值和 ...

  6. HDU 5044 Tree(树链剖分)

    HDU 5044 Tree field=problem&key=2014+ACM%2FICPC+Asia+Regional+Shanghai+Online&source=1&s ...

  7. hdu 5242——Game——————【树链剖分思想】

    Game Time Limit:1500MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  8. hdu 5242 Game(树链剖分,贪心¥)

    Game Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  9. HDU 3237 Tree(树链剖分)(线段树区间取反,最大值)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 9123   Accepted: 2411 Description ...

随机推荐

  1. Objective-C-------(1)创建并使用对象

    #import <Foundation/Foundation.h> int main(int argc, const char * argv[]) { @autoreleasepool { ...

  2. C#中对泛型List进行分组输出元素

    背景:在输出列表时,往往需要按照某一字段进行分组,比如在输出城市列表时,按照首字母进行分组,输出学生列表时,按照年级进行分组,然后再对分组的结果按照其他的字段进行排序. 如存在以下STU学生类,代码如 ...

  3. SpringMVC最核心

    如图所示:

  4. IDEA将Maven项目中src源代码下的xml配置文件编译进classes

    遇到这样的情况,maven项目启动报错,src中某个包下面的xml文件找不到. eclipse编译项目会自动将xml配置文件编译进classes,IDEA却不行 在报错项目的pom.xml文件中添加: ...

  5. You Are the One (区间DP)

    The TV shows such as You Are the One has been very popular. In order to meet the need of boys who ar ...

  6. 66. No EntityManager with actual transaction available for current thread【从零开始学】

    [从零开始学习Spirng Boot-常见异常汇总] 具体异常信息: org.springframework.dao.InvalidDataAccessApiUsageException: No En ...

  7. shell脚本简单密码加密

    #!/bin/sh #输入密码 echo "请输入原密码:" read resultFirst firstPWD=$resultFirst echo "请再次输入原密码: ...

  8. [POJ1797] Heavy Transportation(最大生成树 || 最短路变形)

    传送门 1.最大生成树 可以求出最大生成树,其中权值最小的边即为答案. 2.最短路 只需改变spfa里面的松弛操作就可以求出答案. ——代码 #include <queue> #inclu ...

  9. bzoj 2326 矩阵乘法

    [HNOI2011]数学作业 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2415  Solved: 1413[Submit][Status][Di ...

  10. [NOIP1998] 提高组 洛谷P1012 拼数

    题目描述 设有n个正整数(n≤20),将它们联接成一排,组成一个最大的多位整数. 例如:n=3时,3个整数13,312,343联接成的最大整数为:34331213 又如:n=4时,4个整数7,13,4 ...