PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废,

所以在生产前需计划多投一定比例的板板,

例:订单 量是5000pcs,加投3%,那就是总共投料要投料5000*1.03=5150pcs。

而这个多投的订单标准,每家工厂都可能不一样的,因为加投比例,需要结合订单数量,层数,铜厚,线宽,线距,

表面工艺,HDI阶数,孔径比,特殊工艺,验收标准等等 ,所以工艺难度越大,加投量也是越多。

在这里以K最近邻算法(KNN)进行加投率的模似

K最近邻 (k-Nearest Neighbors,KNN) 算法是一种分类算法,也是最简单易懂的机器学习算法,没有之一。1968年由 Cover 和 Hart 提出,应用场景有字符识别、文本分类、图像识别等领域。该算法的思想是:一个样本与数据集中的k个样本最相似,如果这k个样本中的大多数属于某一个类别,则该样本也属于这个类别。当然实际情况不可能这么简单,这里只是为了说明该算法的用法。

这里举例是对单个蚀刻工序加投率模拟,而对整个订单 的加投模拟要复杂得多

先准备下面数据集中序号A1-A12为生产型号,为已知的蚀刻工序关键对报废影响的关键参数,分为表面铜厚、线宽公差、最小线宽、最小线距4个类,

(此数据是参数对此工序的影响权重值,并非真实的值, 为了简化:报废多少量就是因该要加投多少量)

表格中最下的A13的生产型号,对应的关键参数(表面铜厚、线宽公差、最小线宽、最小线距)已有了,

但如何预测A13这款板的加投率呢。

原理:通过A13这款板的产品信息与历史生产过的产品信息,用欧式距离是一个非常简单又最常用的距离计算方法。

值越小,就是匹配度就越高,   而为了保证预测的结果准确,通过会将前几个匹配度最高的值中取出现频率最高的.

一.建立数据结构类

public class ModTechData
{
/// <summary>
/// 生产型号
/// </summary>
public string pdctno { get; set; }
/// <summary>
/// 表面铜厚
/// </summary>
public int CuThickness { get; set; }
/// <summary>
/// 线宽公差
/// </summary>
public int Tolerance { get; set; }
/// <summary>
/// 最小线宽
/// </summary>
public int Width { get; set; }
/// <summary>
/// 最小线距
/// </summary>
public int Space { get; set; }
/// <summary>
/// 报废率
/// </summary>
public double Scrap { get; set; }
/// <summary>
/// KNN距离
/// </summary>
public double KNN { get; set; }
}

二.构建数据;

           List<ModTechData> TechDataList = new List<ModTechData>() {
new ModTechData(){ pdctno = "A1", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.03}
,new ModTechData(){ pdctno = "A2", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.03}
,new ModTechData(){ pdctno = "A3", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.03}
,new ModTechData(){ pdctno = "A4", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.03}
,new ModTechData(){ pdctno = "A5", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.02}
,new ModTechData(){ pdctno = "A6", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.02}
,new ModTechData(){ pdctno = "A7", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.02}
,new ModTechData(){ pdctno = "A8", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.02}
,new ModTechData(){ pdctno = "A9", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.01}
,new ModTechData(){ pdctno = "A10", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.01}
,new ModTechData(){ pdctno = "A11", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.01}
,new ModTechData(){ pdctno = "A12", CuThickness = , Tolerance = , Width = , Space = , Scrap = 0.01} };

三.计算A13数据与数据集中所有数据的距离。

            ModTechData TechData = new ModTechData() { pdctno = "A13", CuThickness = , Tolerance = , Width = , Space =  };
foreach (var item in TechDataList)
{
var CuThicknessDiff = Math.Pow(TechData.CuThickness - item.CuThickness, );
var ToleranceDiff = Math.Pow(TechData.Tolerance - item.Tolerance, );
var WidthDiff = Math.Pow(TechData.Width - item.Width, );
var SpaceeDiff = Math.Pow(TechData.Space - item.Space, );
item.KNN = Math.Sqrt(CuThicknessDiff + ToleranceDiff + WidthDiff + SpaceeDiff);
}

四.按照距离大小进行递增排序,选取距离最小的k个样本

由于样本数量只有12个,取前5个匹配度最高的,如果实际应有样本量越多可以调整K值

var TechDataSortList = TechDataList.OrderBy(tt => tt.KNN).Take().ToList();

五.确定前k个样本所在类别出现的频率,取出现频率最高的类别

通过此算法,得到了A13这款板加投率匹配后频率最高加投率是0.03(3%)

  var TechDataGroupList =TechDataSortList.GroupBy(tt => tt.Scrap).Select(tt => new { key = tt.Key, count = tt.Count() }).ToList();

六.真实预测加率的挑战

我们通常正常理解:比如一个产品有20个工序,将每一道工序加投率值计算出来,最终相加并得出此产品最终的加投率不就OK了吗。

但实际并不是这么简单,

1.影响工序的特征值不仅限于单工序计算加投,需综合计考虑,局部加投与综合加投,结合分析得到最终加投率

2.不仅限于当前工序的参数影响值计算加投,需考虑前工序设备参数会对后工序的影响,对历史生产的订单机器设备参数采集,覆盖越全预测才准

3.此算法是基于历史数据预测结果,样本量越大,样板特征覆盖率越全,准确率高。为了保证样本数据量在递增,每次加投或补投都需更新样板库。

4.若想预测结果准确一定要确保样本参数与结果是OK的,不然会影响加投预测的偏差。

下图是外层线宽控制鱼骨图,影响线宽参数如此广泛,而想要精准预测加投率也是同样需将影响加投的因素分析出来的。

七.KNN有几个特点:

(1)KNN属于惰性学习(lazy-learning)

这是与急切学习(eager learning)相对应的,因为KNN没有显式的学习过程!也就是说没有训练阶段,从上面的例子就可以看出,数据集事先已有了分类和特征值,待收到新样本后直接进行处理。

(2)KNN的计算复杂度较高

我们从上面的例子可以看到,新样本需要与数据集中每个数据进行距离计算,计算复杂度和数据集中的数据数目n成正比,也就是说,KNN的时间复杂度为O(n),因此KNN一般适用于样本数较少的数据集。

(3)k取不同值时,分类结果可能会有显著不同。

一般k的取值不超过20,上限是n的开方

PCB 加投率计算实现基本原理--K最近邻算法(KNN)的更多相关文章

  1. PCB 机器学习(ML.NET)初体验实现PCB加投率预测

    使用ML.NET建立PCB加投率模型对单一蚀刻工序进行加投率预测, 此实例为最简单预测,要想实现全流程加投率预测挑战难度还是挺大的,可以查看另一种关于大数据在PCB行业应用---加投率计算基本原理:P ...

  2. 转载: scikit-learn学习之K最近邻算法(KNN)

    版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...

  3. k最近邻算法(kNN)

    from numpy import * import operator from os import listdir def classify0(inX, dataSet, labels, k): d ...

  4. 机器学习【一】K最近邻算法

    K最近邻算法 KNN 基本原理 离哪个类近,就属于该类   [例如:与下方新元素距离最近的三个点中,2个深色,所以新元素分类为深色] K的含义就是最近邻的个数.在sklearn中,KNN的K值是通过n ...

  5. 【算法】K最近邻算法(K-NEAREST NEIGHBOURS,KNN)

    K最近邻算法(k-nearest neighbours,KNN) 算法 对一个元素进行分类 查看它k个最近的邻居 在这些邻居中,哪个种类多,这个元素有更大概率是这个种类 使用 使用KNN来做两项基本工 ...

  6. 图说十大数据挖掘算法(一)K最近邻算法

    如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法. 先来一张图,请分辨它是什么水果 很多同学不假思索,直接回答:“菠萝”!!! 仔细看看同学们,这是菠萝么?那再看下边这这张图 ...

  7. 《算法图解》——第十章 K最近邻算法

    第十章    K最近邻算法 1 K最近邻(k-nearest neighbours,KNN)——水果分类 2 创建推荐系统 利用相似的用户相距较近,但如何确定两位用户的相似程度呢? ①特征抽取 对水果 ...

  8. [笔记]《算法图解》第十章 K最近邻算法

    K最近邻算法 简称KNN,计算与周边邻居的距离的算法,用于创建分类系统.机器学习等. 算法思路:首先特征化(量化) 然后在象限中选取目标点,然后通过目标点与其n个邻居的比较,得出目标的特征. 余弦相似 ...

  9. 机器学习-K最近邻算法

    一.介绍 二.编程 练习一(K最近邻算法在单分类任务的应用): import numpy as np #导入科学计算包import matplotlib.pyplot as plt #导入画图工具fr ...

随机推荐

  1. Python之UDP编程

    参考原文 廖雪峰Python教程 TCP是建立可靠连接,并且通信双方都可以以流的形式发送数据.相对TCP,UDP则是面向无连接的协议. 使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口 ...

  2. BigDecimal舍入规则

    1.ROUND_UP 舍入远离零的舍入模式. 在丢弃非零部分之前始终增加数字(始终对非零舍弃部分前面的数字加1). 注意,此舍入模式始终不会减少计算值的大小. 2.ROUND_DOWN 接近零的舍入模 ...

  3. ArrayList经典Demo

    import java.util.ArrayList; import java.util.Iterator; public class ArrayListDemo { public static vo ...

  4. Extjs获得组件值的方式

     Extjs中找Form,Extjs找组件的方式: 1,Extjs.getCmp 2,通过组件之间的关系,up,down 结论: 1,form.getValues()和form.getForm().g ...

  5. TestNG套件测试(二)

    在xml中指定要运行的整个包来执行套件测试 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE ...

  6. openpyxl操作excel文件

    https://blog.csdn.net/hunter_wyh/article/details/78498323

  7. Django-报错解决方法

    无法使用Django新建项目:'django-admin.py’不是内部或外部命令找到site-packages/django/bin(如 D:\Program Files\Anaconda3\Lib ...

  8. Multisim破解教程

    转载:http://www.121down.com/article/article_52879.html

  9. String类的判断功能

    /* * Object:是类层级结构中的根类,所有的类都直接或间接的继承自该类. * 如果一个方法的形式参数是Object,那么这里我们就可以传递它的任意的子类对象. * * String类的判断功能 ...

  10. 【Codeforces 476C】Dreamoon and Sums

    [链接] 我是链接,点我呀:) [题意] 让你求出所有x的和 其中 (x div b)是(x mod b)的倍数 且x mod b不等于0 且(x div b)除(x mod b)的值(假设为k),k ...